Exact Mass: 289.1478
Exact Mass Matches: 289.1478
Found 85 metabolites which its exact mass value is equals to given mass value 289.1478
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Imazethapyr
Imazethapyr is a widely used imidazolinone herbicide worldwide, and its potential adverse effects on non-target plants have raised concerns. Understanding the mechanisms of imazethapyr phytotoxicity is crucial for its agro-ecological risk assessment.
Aspartyl-Arginine
Aspartyl-Arginine is a dipeptide composed of aspartate and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Arginylaspartic acid
Arginylaspartic acid is a dipeptide composed of arginine and aspartic acid. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
3-Methylglutarylcarnitine
3-Methylglutarylcarnitine is an acylcarnitine. More specifically, it is an methylglutaric acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Methylglutarylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-methylglutarylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular 3-methylglutarylcarnitine is elevated in the blood or plasma of individuals with psoriasis (PMID: 33391503), CVD (PMID: 32376321), Norman-Roberts syndrome (PMID: 15083694), type 2 diabetes Mellitus (PMID: 20111019, PMID: 19369366, PMID: 29436377), carnitine palmitoyl-trasferase 2 deficiency (PMID: 9657346), Familial Mediterranean Fever (PMID: 29900937), multiple acyl coenzyme A dehydrogenase Deficiency (PMID: 30510944), CVD in type 2 diabetes Mellitus (PMID: 32431666), and gestational diabetes mellitus (PMID: 29436377). It is also decreased in the blood or plasma of individuals with Celiac disease (PMID: 16425363). 3-Methylglutarylcarnitine is elevated in the urine of individuals with medium-chain acyl-CoA dehydrogenase deficiency (PMID: 1635814, PMID: 2246856). 3-Methylglutarylcarnitine is a diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. It is also identified in the urine of patients with Reye-like syndrome (PMID: 3958190 , 10927963 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. 3-Methylglutarylcarnitine is a diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. It is also identified in the urine of patients with Reye like syndrome. (PMID 3958190; 10927963) [HMDB] 3-Methylglutarylcarnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=102673-95-0 (retrieved 2024-07-10) (CAS RN: 102673-95-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Hydroxylated N-acetyl desmethyl frovatriptan
Hydroxylated N-acetyl desmethyl frovatriptan is a metabolite of frovatriptan. Frovatriptan (trade name Frova) is a triptan drug developed by Vernalis for the treatment of migraine headaches and for short term prevention of menstrual migraine. The product is licensed to Endo Pharmaceuticals in North America and Menarini in Europe. (Wikipedia)
4-Ethoxy-4-oxobutanoylcarnitine
4-Ethoxy-4-oxobutanoylcarnitine is an acylcarnitine. More specifically, it is an 4-ethoxy-4-oxobutanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Ethoxy-4-oxobutanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Ethoxy-4-oxobutanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
6,7-Dimethoxy-2-(piperazin-1-yl)quinazolin-4-amine
Etazolate
Piperidine, 4-(1a,10b-dihydro-6H-dibenzo(3,4:6,7)cyclohept(1,2-b)oxiren-6-ylidene)-
2-PIPERAZINE - 4- AMINO - 6,7 DIMETHOXYQUINAZOLINE
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 62
4,6-Dideoxy-3-C-methyl-4-(methuylamino)mannose,9CI-Me glycoside, N,2-di-Ac
(E)-N-(1-naphthylmethyl)-3-(4-hydroxyphenyl)-2-propen-1-amine
Arg-Asp
A dipeptide formed from L-arginyl and L-aspartic acid residues.
Asp-arg
A dipeptide composed of L-aspartic acid and L-arginine joined by a peptide linkage.
(4-cyano-3-fluorophenyl) 4-propylcyclohexane-1-carboxylate
1-[4-(2-HYDROXY-ETHYL)-PIPERAZIN-1-YLMETHYL]-1H-INDOLE-2,3-DIONE
dimethyl-[5-methyl-1-[(2-methylpropan-2-yl)oxycarbonyl]indol-2-yl]silicon
Acetamide,N-[3-[[2-(acetyloxy)ethyl](2-cyanoethyl)amino]phenyl]-
[2-(3,4-dimethoxy-phenyl)-ethyl]-(2-fluoro-benzyl)-amine
ethyl N-(ethoxycarbonyl)-N-(3-ethoxy-3-oxopropyl)-beta-alaninate
3-(4-CYANOPHENYL)-1-(4-ISOBUTYLPHENYL)PROP-2-EN-1-ONE
2-(3,4-dimethoxyphenyl)ethyl-[(4-fluorophenyl)methyl]azanium
4-Methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2H-benzo[b][1,4]oxazin-3(4H)-one
2-(5-Methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile
4-(5,5-dimethyl-1,3-dioxan-2-yl)piperidine oxalate
etazolate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent
(3R)-3-[(5-carboxypentanoyl)oxy]-4-(trimethylazaniumyl)butanoate
(2S)-2-{[(3S)-3-azaniumyl-3-carboxylatopropanoyl]amino}-5-{[azaniumyl(imino)methyl]amino}pentanoate
3-[(4-Carboxy-3-methylbutanoyl)oxy]-4-(trimethylazaniumyl)butanoate
O-3-methylglutaryl-L-carnitine
An O-acyl-L-carnitine that is L-carnitine having a 3-methylglutaryl group as the acyl substituent
3-(2-aminoethyl)-1H-indol-6-ol;2-amino-3-methyl-4H-imidazol-5-one
3-(2-aminoethyl)-1H-indol-4-ol;2-amino-3-methyl-4H-imidazol-5-one
O-adipoylcarnitine
An O-acylcarnitine compound having adipoyl as the acyl substituent.
6-acetamido-1-hydroxy-5,6,7,8,8a,9-hexahydro-4bH-carbazole-3-carboxamide
O-3-Methylglutarylcarnitine
An O-methylglutarylcarnitine compound having 3-methylglutaryl as the acyl substituent.
O-methylglutarylcarnitine
An O-acylcarnitine in which the acyl group specified is methylglutaryl.
O-Adipoyl-L-carnitine
An O-acyl-L-carnitine in which the acyl group specified is adipoyl.