Exact Mass: 261.1212

Exact Mass Matches: 261.1212

Found 64 metabolites which its exact mass value is equals to given mass value 261.1212, within given mass tolerance error 4.0E-5 dalton. Try search metabolite list with more accurate mass tolerance error 8.0E-6 dalton.

Lotaustralin

(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanenitrile

C11H19NO6 (261.1212)


Lotaustralin is a cyanogenic glycoside. Lotaustralin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Epilotaustralin is found in cereals and cereal products. Epilotaustralin is isolated from Triticum monococcum (wheat). Glycoside from Trifolium repens (white clover) and other plants Lotaustralin is a cyanogenic glucoside isolated from Manihot esculenta [1].

   

Heterodendrin

Heterodendrin

C11H19NO6 (261.1212)


   

Mycosporine

SCHEMBL19129760

C11H19NO6 (261.1212)


   

Epidermin

3-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


Epidermin is found in cereals and cereal products. Epidermin is a constituent of barley (Hordeum vulgare) Constituent of barley (Hordeum vulgare). Epidermin is found in barley and cereals and cereal products.

   

Succinyl Carnitine

(3R)-3-[(3-carboxypropanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C11H19NO6 (261.1212)


Succinylcarnitine is an acylcarnitine. More specifically, it is an succinic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Succinylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine Succinylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980), it has been identified in the human placenta (PMID: 32033212 ). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

O-methylmalonyl-L-carnitine

3-{[(2R)-1-carboxy-3-(trimethylazaniumyl)propan-2-yl]oxy}-2-methyl-3-oxopropanoate

C11H19NO6 (261.1212)


O-methylmalonyl-L-carnitine is considered to be practically insoluble (in water) and acidic

   

O-Methylmalonylcarnitine

3-{[1-carboxy-3-(trimethylazaniumyl)propan-2-yl]oxy}-2-methyl-3-oxopropanoate

C11H19NO6 (261.1212)


O-Methylmalonylcarnitine is an acylcarnitine. More specifically, it is an methylmalonic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-Methylmalonylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine O-Methylmalonylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-[1-Carboxy-2-(trimethylazaniumyl)ethoxy]-5-oxopentanoate

5-[1-Carboxy-2-(trimethylazaniumyl)ethoxy]-5-oxopentanoic acid

C11H19NO6 (261.1212)


   

O-Succinylcarnitine

3-[(3-Carboxypropanoyl)oxy]-4-(trimethylammonio)butanoic acid

C11H19NO6 (261.1212)


   

Epiheterodendrin

3-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


Epiheterodendrin is a member of the class of compounds known as cyanogenic glycosides. Cyanogenic glycosides are glycosides in which the aglycone moiety contains a cyanide group. Epiheterodendrin is soluble (in water) and a very weakly acidic compound (based on its pKa). Epiheterodendrin can be found in barley, which makes epiheterodendrin a potential biomarker for the consumption of this food product.

   
   

Me glycoside,N,2-di-Ac-beta-D-Pyranose-3-Amino-3,6-dideoxygalactose

Me glycoside,N,2-di-Ac-beta-D-Pyranose-3-Amino-3,6-dideoxygalactose

C11H19NO6 (261.1212)


   

2-hydroxymethylbutanenitrile beta-D-glucopyranoside|supinanitriloside A

2-hydroxymethylbutanenitrile beta-D-glucopyranoside|supinanitriloside A

C11H19NO6 (261.1212)


   

(1S, 2R, 2S)-form-Isoleucinopine|isoleucinopine

(1S, 2R, 2S)-form-Isoleucinopine|isoleucinopine

C11H19NO6 (261.1212)


   

Me glycoside,N,4-di-Ac-beta-D-Pyranose-3-Amino-3,6-dideoxygalactose

Me glycoside,N,4-di-Ac-beta-D-Pyranose-3-Amino-3,6-dideoxygalactose

C11H19NO6 (261.1212)


   

methyl 5-acetamido-1,7-anhydro-3,5-dideoxy-beta-D-galacto-octulopyranoside

methyl 5-acetamido-1,7-anhydro-3,5-dideoxy-beta-D-galacto-octulopyranoside

C11H19NO6 (261.1212)


   

(2R)-2-methyl-3-(beta-D-glucopyranosyloxy)butanenitrile

(2R)-2-methyl-3-(beta-D-glucopyranosyloxy)butanenitrile

C11H19NO6 (261.1212)


   

C11H19NO6_Butanenitrile, 2-(beta-D-glucopyranosyloxy)-2-methyl

NCGC00384570-01_C11H19NO6_Butanenitrile, 2-(beta-D-glucopyranosyloxy)-2-methyl-

C11H19NO6 (261.1212)


   

C11H19NO6_3-(beta-D-Glucopyranosyloxy)-2-methylbutanenitrile

NCGC00385866-02_C11H19NO6_3-(beta-D-Glucopyranosyloxy)-2-methylbutanenitrile

C11H19NO6 (261.1212)


   

Lotaustralin

(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanenitrile

C11H19NO6 (261.1212)


Lotaustralin is a cyanogenic glycoside. Lotaustralin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Lotaustralin is a cyanogenic glucoside isolated from Manihot esculenta [1].

   

Mycosporine serinol

Mycosporine serinol

C11H19NO6 (261.1212)


   

Lotaustralin_minor

Lotaustralin_minor

C11H19NO6 (261.1212)


   

Lotaustralin_major

Lotaustralin_major

C11H19NO6 (261.1212)


   

Epidermin

3-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

CAR 4:1;O2

3-[(3-carboxypropanoyl)oxy]-4-(trimethylammonio)butanoate;succinylcarnitine

C11H19NO6 (261.1212)


   

ALLYL 2-ACETAMIDO-2-DEOXY-β-D-GLUCOPYRANOSIDE

ALLYL 2-ACETAMIDO-2-DEOXY-β-D-GLUCOPYRANOSIDE

C11H19NO6 (261.1212)


   

Boc-Glu(OMe)-OH

Boc-Glu(OMe)-OH

C11H19NO6 (261.1212)


   

Boc-D-Glu-OMe

Boc-D-Glu-OMe

C11H19NO6 (261.1212)


   

Boc-D-2-aminoadipic acid

Boc-D-2-aminoadipic acid

C11H19NO6 (261.1212)


   
   

3,3-({[(2-Methyl-2-propanyl)oxy]carbonyl}imino)dipropanoic acid (non-preferred name)

3,3-({[(2-Methyl-2-propanyl)oxy]carbonyl}imino)dipropanoic acid (non-preferred name)

C11H19NO6 (261.1212)


   

methyl 4-bromo-3-methoxythiophene-2-carboxylate

methyl 4-bromo-3-methoxythiophene-2-carboxylate

C11H19NO6 (261.1212)


   
   

Epiheterodendrin

Epiheterodendrin

C11H19NO6 (261.1212)


   

Dihydroosmaronin

Dihydroosmaronin

C11H19NO6 (261.1212)


   
   

3-[1-Carboxy-3-(trimethylazaniumyl)propan-2-yl]oxy-2-methyl-3-oxopropanoate

3-[1-Carboxy-3-(trimethylazaniumyl)propan-2-yl]oxy-2-methyl-3-oxopropanoate

C11H19NO6 (261.1212)


   

3-[(2R)-1-carboxy-3-(trimethylazaniumyl)propan-2-yl]oxy-2-methyl-3-oxopropanoate

3-[(2R)-1-carboxy-3-(trimethylazaniumyl)propan-2-yl]oxy-2-methyl-3-oxopropanoate

C11H19NO6 (261.1212)


   

Methylmalonyl-L-carnitine

Methylmalonyl-L-carnitine

C11H19NO6 (261.1212)


   

O-succinylcarnitine

O-succinylcarnitine

C11H19NO6 (261.1212)


An O-acylcarnitine having succinyl as the acyl substituent.

   

Succinylcarnitine

Succinylcarnitine

C11H19NO6 (261.1212)


   

Suprofen glucuronide

Suprofen glucuronide

C11H19NO6 (261.1212)


   

O-methylmalonylcarnitine

O-methylmalonylcarnitine

C11H19NO6 (261.1212)


An O-acylcarnitine having methylmalonyl as the acyl substituent.

   

Methylmalonylcarnitine

Methylmalonylcarnitine

C11H19NO6 (261.1212)


   

O-methylmalonyl-L-carnitine

O-methylmalonyl-L-carnitine

C11H19NO6 (261.1212)


An O-acyl-L-carnitine in which the acyl group specified is methylmalonyl.

   

CAR DC3:0;2Me

CAR DC3:0;2Me

C11H19NO6 (261.1212)


   
   

CAR DC4:0/CAR DC3:0;2Me

CAR DC4:0/CAR DC3:0;2Me

C11H19NO6 (261.1212)


   

(2r)-3-methyl-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

(2r)-3-methyl-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

3-[(1,3-dihydroxypropan-2-yl)amino]-5-hydroxy-5-(hydroxymethyl)-2-methoxycyclohex-2-en-1-one

3-[(1,3-dihydroxypropan-2-yl)amino]-5-hydroxy-5-(hydroxymethyl)-2-methoxycyclohex-2-en-1-one

C11H19NO6 (261.1212)


   

3-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

3-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

2-[(1-carboxy-2-methylbutyl)amino]pentanedioic acid

2-[(1-carboxy-2-methylbutyl)amino]pentanedioic acid

C11H19NO6 (261.1212)


   

(2r)-2-methyl-2-{[(2s,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

(2r)-2-methyl-2-{[(2s,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

2-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

2-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

2-[(1-carboxy-3-methylbutyl)amino]pentanedioic acid

2-[(1-carboxy-3-methylbutyl)amino]pentanedioic acid

C11H19NO6 (261.1212)


   

(s)-lotaustralin

(s)-lotaustralin

C11H19NO6 (261.1212)


   

(2s)-2-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)butanenitrile

(2s)-2-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)butanenitrile

C11H19NO6 (261.1212)


   

3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

(2r)-2-{[(1s)-1-carboxy-3-methylbutyl]amino}pentanedioic acid

(2r)-2-{[(1s)-1-carboxy-3-methylbutyl]amino}pentanedioic acid

C11H19NO6 (261.1212)


   

(2s)-3-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

(2s)-3-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile

C11H19NO6 (261.1212)


   

(2r)-2-{[(1s,2s)-1-carboxy-2-methylbutyl]amino}pentanedioic acid

(2r)-2-{[(1s,2s)-1-carboxy-2-methylbutyl]amino}pentanedioic acid

C11H19NO6 (261.1212)


   

2-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)butanenitrile

2-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)butanenitrile

C11H19NO6 (261.1212)