Exact Mass: 135.029582

Exact Mass Matches: 135.029582

Found 429 metabolites which its exact mass value is equals to given mass value 135.029582, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Adenine

7H-purin-6-amine

C5H5N5 (135.054493)


Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine. A purine base and a fundamental unit of adenine nucleotides. Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available. Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides. Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373). Adenine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base and a fundamental unit of ADENINE NUCLEOTIDES. See also: adenine; dextrose, unspecified form (component of) ... View More ... Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339). Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA. The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA. Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4] Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

S-Methylcysteine

S-Methyl-L-cysteine, substrate for methionine sulfoxide reductase A

C4H9NO2S (135.0353974)


S-methylcysteine is a cysteine derivative that is L-cysteine in which the hydrogen attached to the sulfur is replaced by a methyl group. It has a role as a human urinary metabolite and a plant metabolite. It is a tautomer of a S-methylcysteine zwitterion. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

Homocysteine

(2S)-2-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0353974)


A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing... Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. [Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10] Biosynthesis of cysteine Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11] Methionine salvage Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase. Other reactions of biochemical significance Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12] Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13] It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14] L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

N-Acetylarylamine

N-Acetylaminobenzene

C8H9NO (135.0684104)


N-Acetylarylamine is an odourless solid chemical of leaf or flake-like appearance. It is also known as acetanilide, N-phenylacetamide, acetanil, or acetanilid, and was formerly known by the trade name Antifebrin. N-Acetylarylamine has analgesic and fever-reducing properties; it is in the same class of drugs as acetaminophen (paracetamol). Under the name acetanilid it formerly figured in the formula of a number of patent medicines and over the counter drugs. In 1948, Julius Axelrod and Bernard Brodie discovered that acetanilide is much more toxic in these applications than other drugs, causing methemoglobinemia and ultimately doing damage to the liver and kidneys. As such, acetanilide has largely been replaced by less toxic drugs, in particular acetaminophen, which is a metabolite of acetanilide and whose use Axelrod and Brodie suggested in the same study. Acetanilide has analgesic and fever-reducing properties; it is in the same class of drugs as acetaminophen (paracetamol). Under the name acetanilid it formerly figured in the formula of a number of patent medicines and over the counter drugs. In 1948, Julius Axelrod and Bernard Brodie discovered that acetanilide is much more toxic in these applications than other drugs, causing methemoglobinemia and ultimately doing damage to the liver and kidneys. As such, acetanilide has largely been replaced by less toxic drugs, in particular acetaminophen, which is a metabolite of acetanilide and whose use Axelrod and Brodie suggested in the same study. KEIO_ID A130

   

N-benzylformamide

Formamide,N-(phenylmethyl)-

C8H9NO (135.0684104)


N-benzylformamide, also known as N-(phenylmethyl)formamide, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. N-benzylformamide is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). N-benzylformamide can be synthesized from formamide. N-benzylformamide can also be synthesized into benzylaminocarbonyl group. N-benzylformamide can be found in a number of food items such as enokitake, wax apple, mexican oregano, and adzuki bean, which makes N-benzylformamide a potential biomarker for the consumption of these food products.

   

2-Phenylacetamide

(alpha-)2-Phenylacetamide

C8H9NO (135.0684104)


2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.

   

2-Hydroxymethylserine

alpha-(Hydroxymethyl)serine

C4H9NO4 (135.0531554)


   

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0531554)


(+)-threo-2-Amino-3,4-dihydroxybutanoic acid is found in mushrooms. (+)-threo-2-Amino-3,4-dihydroxybutanoic acid is isolated from the mushroom Lyophyllum ulmariu

   

Phenylacetaldoxime

N-(2-Phenylethylidene)hydroxylamine

C8H9NO (135.0684104)


   

DL-Homocysteine

2-Amino-4-mercaptobutyric acid

C4H9NO2S (135.0353974)


DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.

   

2-Benzoxazolol

InChI=1/C7H5NO2/c9-7-8-5-3-1-2-4-6(5)10-7/h1-4H,(H,8,9

C7H5NO2 (135.032027)


2-benzoxazolinone is a member of the class of benzoxazoles that is 2,3-dihydro-1,3-benzoxazole carrying an oxo group at position 2. It has a role as an allelochemical and a phytoalexin. 2-Benzoxazolinone is a natural product found in Scoparia dulcis, Acanthus ilicifolius, and other organisms with data available. A member of the class of benzoxazoles that is 2,3-dihydro-1,3-benzoxazole carrying an oxo group at position 2. 2-Benzoxazolol is found in cereals and cereal products. 2-Benzoxazolol is found in rye seedlings. Found in rye seedlings 2-Benzoxazolinone is an anti-leishmanial agent with an LC50 of 40 μg/mL against L. donovani[1]. A building block in chemical synthesis. 1,3-Benzoxazol-2(3H)-one derivatives have antimicrobial activity against a selection of Gram-positive, Gram-negative bacteria and yeasts[3]. Derivatives as anti-quorum sensing agent[4]. 2-Benzoxazolinone is an anti-leishmanial agent with an LC50 of 40 μg/mL against L. donovani[1]. A building block in chemical synthesis. 1,3-Benzoxazol-2(3H)-one derivatives have antimicrobial activity against a selection of Gram-positive, Gram-negative bacteria and yeasts[3]. Derivatives as anti-quorum sensing agent[4].

   

Benzothiazole

1-Thia-3-azaindene

C7H5NS (135.014269)


Benzothiazole, also known as BT or benzosulfonazole, belongs to the class of organic compounds known as benzothiazoles. These are organic compounds containing a benzene fused to a thiazole ring (a five-membered ring with four carbon atoms, one nitrogen atom and one sulfur atom). This ring is a potential component in nonlinear optics (NLO). The nine atoms of the bicycle and the attached substituents are coplanar. Although the parent compound, benzothiazole is not widely used, many of its derivatives are found in commercial products or in nature. Benzothiazole is a coffee, cooked, and gasoline tasting compound. benzothiazole is found, on average, in the highest concentration in safflowers. benzothiazole has also been detected, but not quantified, in several different foods, such as common persimmons, fruits, guava, potato, and tea. This could make benzothiazole a potential biomarker for the consumption of these foods. Firefly luciferin can be considered a derivative of benzothiazole. The compound is used also used as an insecticide and food flavoring agent. Some drugs contain this group, examples being riluzole and pramipexole. It is colorless, slightly viscous liquid. It is a thermally stable electron-withdrawing moiety with numerous applications in dyes such as thioflavin. Benzothiazole is an aromatic heterocyclic compound with the chemical formula C7H5NS. Isolated from cranberries Benzothiazole is a natural occurring heterocyclic nuclei. Benzothiazole nucleus possesses a number of biological activities such as anticancer, antimicrobial, antidiabetic, anti-inflammatory, antileishmanial, and antiviral[1].

   

2-Aminoacetophenone

2-Aminoacetophenone hydrochloride

C8H9NO (135.0684104)


2-Aminoacetophenone is found in cereals and cereal products. 2-Aminoacetophenone is a component of tortilla aroma and of other corn flour product Component of tortilla aroma and of other corn flour products. 2-Aminoacetophenone is found in cereals and cereal products.

   

S-methylcysteine

S-methylcysteine, hydrochloride, (L-Cys)-isomer

C4H9NO2S (135.0353974)


Methylcysteine is one of the identified number of bioactive substances in garlic that are water soluble (PMID 16484549). It has been suggested that the use of these organosulfur agents derived from garlic could protect partially oxidized and glycated LDL or plasma against further oxidative and glycative deterioration, which might benefit patients with diabetic-related vascular diseases (PMID 15161248). It may also exert some chemopreventive effects on chemical carcinogenesis. However, it should be borne in mind that may also demonstrate promotion potential, depending on the organ examined (PMID 9591199). Methylcystein is a biomarker for the consumption of dried and cooked beans. S-n-methylcysteine, also known as (2r)-2-amino-3-(methylsulfanyl)propanoic acid or 3-(methylthio)-L-alanine, is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-n-methylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-n-methylcysteine can be found in soft-necked garlic, which makes S-n-methylcysteine a potential biomarker for the consumption of this food product. S-n-methylcysteine can be found primarily in blood and urine. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

2-Acetyl-6-methylpyridine

Methyl 6-methyl-2-pyridyl ketone, 8ci

C8H9NO (135.0684104)


2-Acetyl-6-methylpyridine is found in alcoholic beverages. 2-Acetyl-6-methylpyridine is a minor component of rum. Flavour modifying agent for coffee. Minor component of rum. Flavour modifying agent for coffee. 2-Acetyl-6-methylpyridine is found in alcoholic beverages and coffee and coffee products.

   

2-Acetyl-4-methylpyridine

1-(4-Methyl-2-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


2-Acetyl-4-methylpyridine is found in fruits. 2-Acetyl-4-methylpyridine is a component of fig leaf absolute (Ficus carica). Component of fig leaf absolute (Ficus carica). 2-Acetyl-4-methylpyridine is found in fruits.

   

4-Acetyl-2-methylpyridine

1-(2-Methyl-4-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


4-Acetyl-2-methylpyridine is found in coffee and coffee products. 4-Acetyl-2-methylpyridine is a component of roasting coffee aroma. Component of roasting coffee aroma. 4-Acetyl-2-methylpyridine is found in coffee and coffee products.

   

2'-Aminoacetophenone

2-Aminoacetophenone hydrochloride

C8H9NO (135.0684104)


2-Aminoacetophenone, also known as O-acetylaniline or 1-acetyl-2-aminobenzene, belongs to the class of organic compounds known as alkyl-phenylketones. These are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. 2-Aminoacetophenone exists as a solid, slightly soluble (in water), and an extremely weak acidic (essentially neutral) compound (based on its pKa). Within the cell, 2-aminoacetophenone is primarily located in the cytoplasm. 2-Aminoacetophenone is a sweet, foxy, and grape tasting compound that can be found in fruits and milk and milk products. This makes 2-aminoacetophenone a potential biomarker for the consumption of these food products. 2'-Aminoacetophenone is an aromatic compound containing a ketone substituted by one alkyl group, and a phenyl group. 2'-Aminoacetophenone can be used as a breath biomarker for the detection of Ps. Aeruginosa infections in the cystic fibrosis lung[1].

   

4-Acetyl-3-methylpyridine

1-(3-Methyl-4-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


4-Acetyl-3-methylpyridine is found in coffee and coffee products. 4-Acetyl-3-methylpyridine is a component of roasting coffee aroma. Component of roasting coffee aroma. 4-Acetyl-3-methylpyridine is found in coffee and coffee products.

   

4-(Hydroxymethyl)benzenediazonium(1+)

4-(Hydroxymethyl)benzenediazonium ion, tetrafluoroborate (1-)

C7H7N2O+ (135.0558352)


4-(Hydroxymethyl)benzenediazonium(1+) is found in mushrooms. 4-(Hydroxymethyl)benzenediazonium(1+) is a constituent of the basal stalk of the common edible mushroom Agaricus bisporus

   

2,3-Dihydro-1H-pyrrolizine-5-carboxaldehyde

2,3-Dihydro-1H-pyrrolizine-5-carboxaldehyde

C8H9NO (135.0684104)


Proline-derived Maillard product. Proline-derived Maillard product

   

5-(2-Furanyl)-3,4-dihydro-2H-pyrrole

2-(furan-2-yl)-4,5-dihydro-3H-pyrrole

C8H9NO (135.0684104)


Proline-derived Maillard product. Proline-derived Maillard product

   

2-Acetyl-5-methylpyridine

1-(5-Methyl-2-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


2-Acetyl-5-methylpyridine is found in coffee and coffee products. 2-Acetyl-5-methylpyridine is a component of roasting coffee aroma. Component of roasting coffee aroma. 2-Acetyl-5-methylpyridine is found in coffee and coffee products.

   

1-Hydroxybenzotriazole

1-Hydroxybenzotriazole, ammonium salt

C6H5N3O (135.04326)


   

1,2-Benzisothiazole

1,2-benzisothiazole

C7H5NS (135.014269)


   

1H-Pyrazolo[3,4-d]pyrimidin-4-amine

1H-Pyrazolo[3,4-d]pyrimidin-4-amine

C5H5N5 (135.054493)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D009676 - Noxae > D000963 - Antimetabolites Pyrazoloadenine is a potent RET (REarranged during Transfection) lung cancer oncoprotein inhibitor. Pyrazoloadenine shows anticancer activity[1][2].

   

2-Aminopurine

2,3-dihydro-1H-purin-2-imine

C5H5N5 (135.054493)


   

m-Toluamide

3-Methyl-benzamide

C8H9NO (135.0684104)


   

4-Aminoacetophenone

1-(4-aminophenyl)ethan-1-one

C8H9NO (135.0684104)


   

9h-Purin-9-amine

9h-Purin-9-amine

C5H5N5 (135.054493)


   

Benzo[d]isoxazol-3-ol

2,3-dihydro-1,2-benzoxazol-3-one

C7H5NO2 (135.032027)


   

Mecysteine

methyl 2-amino-3-sulfanylpropanoate

C4H9NO2S (135.0353974)


   

Dithiobiuret

{[thio(carbonoimidyl)]amino}methanimidothioic acid

C2H5N3S2 (134.992489)


   

Isothiocyanatobenzene

Isothiocyanic acid phenyl ester

C7H5NS (135.014269)


   

N-Methylcysteine

2-(Methylamino)-3-sulphanylpropanoic acid

C4H9NO2S (135.0353974)


   

Thieno[2,3-b]pyridine

Thieno[2,3-b]pyridine

C7H5NS (135.014269)


   

thieno[3,2-b]pyridine

Thieno[3,2-b]pyridine

C7H5NS (135.014269)


   

Thiomorpholine 1,1-dioxide

1lambda6-thiomorpholine-1,1-dione

C4H9NO2S (135.0353974)


   

S-N-Methylcysteine

S-methylcysteine, hydrochloride, (L-Cys)-isomer

C4H9NO2S (135.0353974)


S-n-methylcysteine, also known as (2r)-2-amino-3-(methylsulfanyl)propanoic acid or 3-(methylthio)-L-alanine, is a member of the class of compounds known as L-cysteine-s-conjugates. L-cysteine-s-conjugates are compounds containing L-cysteine where the thio-group is conjugated. S-n-methylcysteine is soluble (in water) and a moderately acidic compound (based on its pKa). S-n-methylcysteine can be found in soft-necked garlic, which makes S-n-methylcysteine a potential biomarker for the consumption of this food product. S-n-methylcysteine can be found primarily in blood and urine. S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

3-(METHYLTHIO)ALANINE

3-(METHYLTHIO)ALANINE

C4H9NO2S (135.0353974)


   

4-Hydroxybenzotriazole

4-Hydroxybenzotriazole

C6H5N3O (135.04326)


CONFIDENCE standard compound; INTERNAL_ID 2380 CONFIDENCE Reference Standard (Level 1); Source; 4OHBT_MSMS.txt CONFIDENCE standard compound; INTERNAL_ID 8681 CONFIDENCE standard compound; INTERNAL_ID 8213 CONFIDENCE standard compound; INTERNAL_ID 4201 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2900 CONFIDENCE standard compound; INTERNAL_ID 2236

   

3-Aminoacetophenone

3`-Aminoacetophenone

C8H9NO (135.0684104)


CONFIDENCE standard compound; INTERNAL_ID 8035

   

1-Hydroxybenzotriazole

1-Hydroxybenzotriazole

C6H5N3O (135.04326)


CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2378; ORIGINAL_PRECURSOR_SCAN_NO 2376 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2376; ORIGINAL_PRECURSOR_SCAN_NO 2375 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2379; ORIGINAL_PRECURSOR_SCAN_NO 2375 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2370; ORIGINAL_PRECURSOR_SCAN_NO 2369 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2440; ORIGINAL_PRECURSOR_SCAN_NO 2438 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2380; ORIGINAL_PRECURSOR_SCAN_NO 2378 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5008; ORIGINAL_PRECURSOR_SCAN_NO 5005 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5019; ORIGINAL_PRECURSOR_SCAN_NO 5018 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5044; ORIGINAL_PRECURSOR_SCAN_NO 5043 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5043; ORIGINAL_PRECURSOR_SCAN_NO 5039 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5051; ORIGINAL_PRECURSOR_SCAN_NO 5048 CONFIDENCE standard compound; INTERNAL_ID 852; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5050; ORIGINAL_PRECURSOR_SCAN_NO 5049 INTERNAL_ID 852; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5050; ORIGINAL_PRECURSOR_SCAN_NO 5049 CONFIDENCE standard compound; INTERNAL_ID 2232 CONFIDENCE Reference Standard (Level 1); Source; 1OHBT_MSMS.txt CONFIDENCE standard compound; EAWAG_UCHEM_ID 2899

   

Aminopurine

Aminopurine

C5H5N5 (135.054493)


   

4-amino-2,3-dihydroxy-butyric acid

4-amino-2,3-dihydroxy-butyric acid

C4H9NO4 (135.0531554)


   

Acetophenone oxime

Acetophenone oxime

C8H9NO (135.0684104)


   

4-(methylamino)benzaldehyde

4-(methylamino)benzaldehyde

C8H9NO (135.0684104)


   

3-Methylbenzamide

3-Methylbenzamide

C8H9NO (135.0684104)


   

Nitrile-2,5-Dihydroxybenzoic acid

Nitrile-2,5-Dihydroxybenzoic acid

C7H5NO2 (135.032027)


   
   

2-amino-3-sulfanylbutanoic acid

2-amino-3-sulfanylbutanoic acid

C4H9NO2S (135.0353974)


   

4-Methylbenzamide

4-Methylbenzamide

C8H9NO (135.0684104)


   

Nitrile-3,4-Dihydroxybenzoic acid

Nitrile-3,4-Dihydroxybenzoic acid

C7H5NO2 (135.032027)


   

1-(4-methylpyridin-3-yl)ethanone

1-(4-methylpyridin-3-yl)ethanone

C8H9NO (135.0684104)


   

1-(2-methylpyridin-3-yl)ethanone

1-(2-methylpyridin-3-yl)ethanone

C8H9NO (135.0684104)


   

Isothiocyanatobenzene

Isothiocyanatobenzene

C7H5NS (135.014269)


   

5-Acetyl-2-methylpyridine

5-Acetyl-2-methylpyridine

C8H9NO (135.0684104)


   

agrocybyne A|octa-2,4-diynamide

agrocybyne A|octa-2,4-diynamide

C8H9NO (135.0684104)


   

methyl D-cysteinate

methyl D-cysteinate

C4H9NO2S (135.0353974)


   

Zarzissine

Zarzissine

C5H5N5 (135.054493)


A organonitrogen heterocyclic compound that is 1H-imidazo[4,5-d]pyridazine substituted by an amino group at position 2. A guanidine alkaloid isolated from Anchinoe paupertas, it exhibits cytotoxic activity against human and murine tumor cell lines.

   

3-Propionylpyridine

3-Propionylpyridine

C8H9NO (135.0684104)


   

2-(methylamino)benzaldehyde

2-(methylamino)benzaldehyde

C8H9NO (135.0684104)


   

2,3,4-trihydroxybutanamide

2,3,4-trihydroxybutanamide

C4H9NO4 (135.0531554)


   
   
   

Nitrile-2,4-Dihydroxybenzoic acid

Nitrile-2,4-Dihydroxybenzoic acid

C7H5NO2 (135.032027)


   

Ph ester-Thiocyanic acid

Ph ester-Thiocyanic acid

C7H5NS (135.014269)


   

Benzo[d]thiazole

Benzo[d]thiazole

C7H5NS (135.014269)


An organic heterobicyclic compound that is a fusion product between benzene and thiazole. The parent of the class of benzothiazoles. CONFIDENCE standard compound; INTERNAL_ID 4056 CONFIDENCE standard compound; INTERNAL_ID 8821 CONFIDENCE standard compound; INTERNAL_ID 4208 CONFIDENCE standard compound; EAWAG_UCHEM_ID 343 Benzothiazole is a natural occurring heterocyclic nuclei. Benzothiazole nucleus possesses a number of biological activities such as anticancer, antimicrobial, antidiabetic, anti-inflammatory, antileishmanial, and antiviral[1].

   

Adenine

Adenine

C5H5N5 (135.054493)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2357 INTERNAL_ID 2357; CONFIDENCE Reference Standard (Level 1) MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GFFGJBXGBJISGV_STSL_0142_Adenine_0125fmol_180430_S2_LC02_MS02_16; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

L-Homocysteine

DL-Homocysteine

C4H9NO2S (135.0353974)


A homocysteine that has L configuration. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Homocysteine

DL-Homocysteine

C4H9NO2S (135.0353974)


A sulfur-containing amino acid consisting of a glycine core with a 2-mercaptoethyl side-chain. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; FFFHZYDWPBMWHY_STSL_0127_Homocysteine_8000fmol_180506_S2_LC02_MS02_123; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Methylcysteine

S-Methyl-L-cysteine

C4H9NO2S (135.0353974)


S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

2-Aminoacetophenone

2-Amino-1-phenylethanone

C8H9NO (135.0684104)


   

2-PHENYLACETAMIDE

2-PHENYLACETAMIDE

C8H9NO (135.0684104)


A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.

   

acetanilide

N-phenylacetamide

C8H9NO (135.0684104)


   

Adenine hydrochloride

Adenine hydrochloride

C5H5N5 (135.054493)


   

2-Benzoxazolinone

2-Benzoxazolinone

C7H5NO2 (135.032027)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ASSKVPFEZFQQNQ-UHFFFAOYSA-N_STSL_0194_2-Benzoxazolinone_8000fmol_180831_S2_L02M02_07; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

3-Aminoacetophenon

3-Aminoacetophenone

C8H9NO (135.0684104)


CONFIDENCE standard compound; INTERNAL_ID 2439

   

Adenine; LC-tDDA; CE10

Adenine; LC-tDDA; CE10

C5H5N5 (135.054493)


   

Adenine; LC-tDDA; CE20

Adenine; LC-tDDA; CE20

C5H5N5 (135.054493)


   

Adenine; LC-tDDA; CE30

Adenine; LC-tDDA; CE30

C5H5N5 (135.054493)


   

Adenine; LC-tDDA; CE40

Adenine; LC-tDDA; CE40

C5H5N5 (135.054493)


   

1,5,6,7-Tetrahydro-4H-indol-4-one

1,5,6,7-Tetrahydro-4H-indol-4-one

C8H9NO (135.0684104)


   

N-Benzylformamide

Formamide,N-(phenylmethyl)-

C8H9NO (135.0684104)


   

3,N4-Etheno-cytosine

3,N4-Etheno-cytosine

C6H5N3O1 (135.04326)


   

Phenacylamine_major

Phenacylamine_major

C8H9NO (135.0684104)


   

S-Methyl-L-cysteine

S-Methyl-L-cysteine

C4H9NO2S (135.0353974)


S-Methyl-L-cysteine is a natural product that acts as a substrate in the catalytic antioxidant system mediated by methionine sulfoxide reductase A (MSRA), with antioxidative, neuroprotective, and anti-obesity activities.

   

Phenacylamine

Phenacylamine

C8H9NO (135.0684104)


   

mecysteine

mecysteine

C4H9NO2S (135.0353974)


C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants

   

Methylformamide

(e)-methylimidoformic acid

C8H9NO (135.0684104)


   

(+)-Threo-form

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0531554)


   

4-Hmbdi

4-(Hydroxymethyl)benzenediazonium tetrafluoroborate

C7H7N2O+ (135.0558352)


   

O-Acetylaniline

1-(2-Aminophenyl)ethanone, 9ci

C8H9NO (135.0684104)


2'-Aminoacetophenone is an aromatic compound containing a ketone substituted by one alkyl group, and a phenyl group. 2'-Aminoacetophenone can be used as a breath biomarker for the detection of Ps. Aeruginosa infections in the cystic fibrosis lung[1].

   

Vangard BT

1-Thia-3-azaindene

C7H5NS (135.014269)


Benzothiazole is a natural occurring heterocyclic nuclei. Benzothiazole nucleus possesses a number of biological activities such as anticancer, antimicrobial, antidiabetic, anti-inflammatory, antileishmanial, and antiviral[1].

   

2-Acetyl-4-picoline

1-(4-Methyl-2-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


   

6-Acetyl-2-picoline

Methyl 6-methyl-2-pyridyl ketone, 8ci

C8H9NO (135.0684104)


   

5-Formyl-2,3-dihydro-1H-pyrrolizine

2,3-Dihydro-1H-pyrrolizine-5-carboxaldehyde

C8H9NO (135.0684104)


   

2-(2-Furyl)-1-pyrroline

5-(furan-2-yl)-3,4-dihydro-2H-pyrrole

C8H9NO (135.0684104)


   

2-Acetyl-5-picoline

1-(5-Methyl-2-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


   

4-Acetyl-2-picoline

1-(2-Methyl-4-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


   

4-Acetyl-3-picoline

1-(3-Methyl-4-pyridinyl)ethanone, 9ci

C8H9NO (135.0684104)


   

2-amino-3,4-dihydroxybutanoic acid

(+)-threo-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0531554)


   

3H-Imidazo[4,5-b]pyridine, 4-oxide

3H-Imidazo[4,5-b]pyridine, 4-oxide

C6H5N3O (135.04326)


   

Furo[2,3-c]pyridine-7(6H)-one

Furo[2,3-c]pyridine-7(6H)-one

C7H5NO2 (135.032027)


   

3-iodo-6,7-dihydro-5H-cyclopenta[b]pyridine

3-iodo-6,7-dihydro-5H-cyclopenta[b]pyridine

C8H9NO (135.0684104)


   

2-amino-4-methylbenzaldehyde

2-amino-4-methylbenzaldehyde

C8H9NO (135.0684104)


   

pyridine-2,4-dicarbaldehyde

pyridine-2,4-dicarbaldehyde

C7H5NO2 (135.032027)


   

3,4-dihydro-2H-pyrano[2,3-b]pyridine

3,4-dihydro-2H-pyrano[2,3-b]pyridine

C8H9NO (135.0684104)


   

6,7-DIHYDRO-1H-INDOL-5(4H)-ONE

6,7-DIHYDRO-1H-INDOL-5(4H)-ONE

C8H9NO (135.0684104)


   

Cyanuric fluoride

Cyanuric fluoride

C3F3N3 (135.0044316)


   

6-fluoroindole

6-fluoroindole

C8H6FN (135.0484248)


   

Benzaldehyde,4-methyl-, oxime

Benzaldehyde,4-methyl-, oxime

C8H9NO (135.0684104)


   

2-Fluorophenylacetonitrile

2-Fluorophenylacetonitrile

C8H6FN (135.0484248)


   

3-Thiophenamine,tetrahydro-, 1,1-dioxide

3-Thiophenamine,tetrahydro-, 1,1-dioxide

C4H9NO2S (135.0353974)


   

1-(3-Methyl-2-pyridinyl)ethanone

1-(3-Methyl-2-pyridinyl)ethanone

C8H9NO (135.0684104)


   

2,2,2-trifluoroethanaminium chloride

2,2,2-trifluoroethanaminium chloride

C2H5ClF3N (135.0062596)


   

furo[2,3-d]pyrimidin-4-amine

furo[2,3-d]pyrimidin-4-amine

C6H5N3O (135.04326)


   

Piperidin-3-one hydrochloride

Piperidin-3-one hydrochloride

C5H10ClNO (135.045088)


   

1-(4-METHYL-3-PYRIDINYL)ETHANONE

1-(4-METHYL-3-PYRIDINYL)ETHANONE

C8H9NO (135.0684104)


   

6,7-Dihydro-5H-cyclopenta[b]pyridin-5-ol

6,7-Dihydro-5H-cyclopenta[b]pyridin-5-ol

C8H9NO (135.0684104)


   
   

Furo[2,3-c]pyridin-3(2H)-one

Furo[2,3-c]pyridin-3(2H)-one

C7H5NO2 (135.032027)


   

OXAZOLO[4,5-B]PYRIDIN-2-AMINE

OXAZOLO[4,5-B]PYRIDIN-2-AMINE

C6H5N3O (135.04326)


   

1H-1,2,4-Triazole,3-(1H-imidazol-1-yl)-(9CI)

1H-1,2,4-Triazole,3-(1H-imidazol-1-yl)-(9CI)

C5H5N5 (135.054493)


   

Formamide,N-(2-methylphenyl)-

Formamide,N-(2-methylphenyl)-

C8H9NO (135.0684104)


   

AM0210000 [RTECS]

AM0210000 [RTECS]

C8H6FN (135.0484248)


   

2,1,3-benzoxadiazol-4-amine

2,1,3-benzoxadiazol-4-amine

C6H5N3O (135.04326)


   

3-Fluoro-4-methylbenzonitrile

3-Fluoro-4-methylbenzonitrile

C8H6FN (135.0484248)


   

n-isopropyl-2-chloroacetamide

n-isopropyl-2-chloroacetamide

C5H10ClNO (135.045088)


   

1H-pyrazolo[3,4-b]pyrazin-3-amine

1H-pyrazolo[3,4-b]pyrazin-3-amine

C5H5N5 (135.054493)


   

3-Thiophenamine hydrochloride (1:1)

3-Thiophenamine hydrochloride (1:1)

C4H6ClNS (134.9909466)


   

3-fluorobenzyl cyanide

3-fluorobenzyl cyanide

C8H6FN (135.0484248)


   
   

2,3-dimethylpyridine-4-carbaldehyde

2,3-dimethylpyridine-4-carbaldehyde

C8H9NO (135.0684104)


   

Nitroacetaldehyde dimethyl acetal

Nitroacetaldehyde dimethyl acetal

C4H9NO4 (135.0531554)


   

6H-Pyrrolo[2,3-d]pyrimidin-6-one, 5,7-dihydro- (8CI)

6H-Pyrrolo[2,3-d]pyrimidin-6-one, 5,7-dihydro- (8CI)

C6H5N3O (135.04326)


   

2-Chloro-N-ethyl-N-methylacetamide

2-Chloro-N-ethyl-N-methylacetamide

C5H10ClNO (135.045088)


   

Formamide,N-(3-methylphenyl)-

Formamide,N-(3-methylphenyl)-

C8H9NO (135.0684104)


   

OXAZOLO[4,5-C]PYRIDIN-2-AMINE

OXAZOLO[4,5-C]PYRIDIN-2-AMINE

C6H5N3O (135.04326)


   

2,6-dihydroxybenzonitrile

2,6-dihydroxybenzonitrile

C7H5NO2 (135.032027)


   

1H-Pyrazolo[4,3-d]pyrimidin-7-amine

1H-Pyrazolo[4,3-d]pyrimidin-7-amine

C5H5N5 (135.054493)


   

1,5,9-triazabicyclo[4.3.0]nona-3,5,7-trien-2-one

1,5,9-triazabicyclo[4.3.0]nona-3,5,7-trien-2-one

C6H5N3O (135.04326)


   

3,4-Dihydro-2H-pyrano(3,2-b)pyridine

3,4-Dihydro-2H-pyrano(3,2-b)pyridine

C8H9NO (135.0684104)


   

3,4-Dihydro-2H-pyrano[3,2-c]pyridine

3,4-Dihydro-2H-pyrano[3,2-c]pyridine

C8H9NO (135.0684104)


   

2-Amino-1,4,5,6-tetrahydropyrimidine Hydrochloride

2-Amino-1,4,5,6-tetrahydropyrimidine Hydrochloride

C4H10ClN3 (135.056321)


   

(7S)-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol

(7S)-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol

C8H9NO (135.0684104)


   

1H-Benzotriazol-5-ol

1H-Benzotriazol-5-ol

C6H5N3O (135.04326)


   

2-methyl-5-acetylpyridine

2-methyl-5-acetylpyridine

C8H9NO (135.0684104)


   

2,6-Dimethylnicotinaldehyde

2,6-Dimethylnicotinaldehyde

C8H9NO (135.0684104)


   

Thieno[3,2-b]pyridine

Thieno[3,2-b]pyridine

C7H5NS (135.014269)


   

1h-pyrrolo[2,3-d]pyrimidin-2(7h)-one

1h-pyrrolo[2,3-d]pyrimidin-2(7h)-one

C6H5N3O (135.04326)


   

4-Fluoro-2-methylbenzonitrile

4-Fluoro-2-methylbenzonitrile

C8H6FN (135.0484248)


   

Carbamodithioic acid,N,N-dimethyl-, methyl ester

Carbamodithioic acid,N,N-dimethyl-, methyl ester

C4H9NS2 (135.0176394)


   

ethyl4-hydroxy-2-methylpyrimidine-5-carboxylate

ethyl4-hydroxy-2-methylpyrimidine-5-carboxylate

C6H5N3O (135.04326)


   

tetrazolo[1,5-a]pyridin-8-amine

tetrazolo[1,5-a]pyridin-8-amine

C5H5N5 (135.054493)


   

Furo[3,2-b]pyridin-6-ol

Furo[3,2-b]pyridin-6-ol

C7H5NO2 (135.032027)


   

(S)-5-(Chloromethyl)oxazolidin-2-one

(S)-5-(Chloromethyl)oxazolidin-2-one

C4H6ClNO2 (135.00870460000002)


   

S-methyl-D-cysteine

S-methyl-D-cysteine

C4H9NO2S (135.0353974)


   

ethyl-2,2,2-d3-malonic acid

ethyl-2,2,2-d3-malonic acid

C5H5D3O4 (135.061088334)


   

1H-1,2,3-Triazolo[4,5-c]pyridin-7-amine(9CI)

1H-1,2,3-Triazolo[4,5-c]pyridin-7-amine(9CI)

C5H5N5 (135.054493)


   

1H-Imidazole-4-carboxamide, 5-ethynyl- (9CI)

1H-Imidazole-4-carboxamide, 5-ethynyl- (9CI)

C6H5N3O (135.04326)


   

N-Nitro-S-methyl isothiourea

N-Nitro-S-methyl isothiourea

C2H5N3O2S (135.010247)


   

1H-Imidazo[4,5-f][1,4]oxazepine (9CI)

1H-Imidazo[4,5-f][1,4]oxazepine (9CI)

C6H5N3O (135.04326)


   

Cyanuricfluoride,typically99

Cyanuricfluoride,typically99

C3F3N3 (135.0044316)


   

Acetamide,2-chloro-N-propyl-

Acetamide,2-chloro-N-propyl-

C5H10ClNO (135.045088)


   

2-furoylacetonitrile

2-furoylacetonitrile

C7H5NO2 (135.032027)


   

3-FUROYLACETONITRILE

3-FUROYLACETONITRILE

C7H5NO2 (135.032027)


   

2,3-Dihydro-1-benzofuran-4-amine

2,3-Dihydro-1-benzofuran-4-amine

C8H9NO (135.0684104)


   

Isoxazolo[4,5-b]pyridin-3-amine

Isoxazolo[4,5-b]pyridin-3-amine

C6H5N3O (135.04326)


   

1-Methylcyclopropanesulfonamide

1-Methylcyclopropanesulfonamide

C4H9NO2S (135.0353974)


   

1H-Pyrazolo[4,3-B]Pyridin-5-ol

1H-Pyrazolo[4,3-B]Pyridin-5-ol

C6H5N3O (135.04326)


   

2-Methoxypyrimidine-5-carbonitrile

2-Methoxypyrimidine-5-carbonitrile

C6H5N3O (135.04326)


   

4-Mercaptobenzonitrile

4-Mercaptobenzonitrile

C7H5NS (135.014269)


   

2H-1,2-Thiazine,tetrahydro-, 1,1-dioxide

2H-1,2-Thiazine,tetrahydro-, 1,1-dioxide

C4H9NO2S (135.0353974)


   

4-methylformanilide

4-methylformanilide

C8H9NO (135.0684104)


   

8-oxa-3-azabicyclo[4.3.0]nona-2,4,10-trien-7-one

8-oxa-3-azabicyclo[4.3.0]nona-2,4,10-trien-7-one

C7H5NO2 (135.032027)


   

PYRROLO[1,2-D][1,2,4]TRIAZIN-1(2H)-ONE

PYRROLO[1,2-D][1,2,4]TRIAZIN-1(2H)-ONE

C6H5N3O (135.04326)


   

3-(3-Pyridyl)-2-propen-1-ol

3-(3-Pyridyl)-2-propen-1-ol

C8H9NO (135.0684104)


   

Diethylcarbamic chloride

Diethylcarbamic chloride

C5H10ClNO (135.045088)


   

1H-Pyrazolo[3,4-c]pyridin-3(2H)-one

1H-Pyrazolo[3,4-c]pyridin-3(2H)-one

C6H5N3O (135.04326)


   

4-METHOXY-2-VINYLPYRIDINE

4-METHOXY-2-VINYLPYRIDINE

C8H9NO (135.0684104)


   

1-Hydroxybenzotriazole hydrate

1-Hydroxybenzotriazole hydrate

C6H5N3O (135.04326)


   

2,6-diformylpyridine

2,6-diformylpyridine

C7H5NO2 (135.032027)


   
   

5-Fluoroindole

5-Fluoroindole

C8H6FN (135.0484248)


   

2,3-Dihydroxybenzonitrile

2,3-Dihydroxybenzonitrile

C7H5NO2 (135.032027)


   

3-(Methylsulfonyl)azetidine

3-(Methylsulfonyl)azetidine

C4H9NO2S (135.0353974)


   

6,7-DIHYDRO-5H-CYCLOPENTA[B]PYRIDINE 1-OXIDE

6,7-DIHYDRO-5H-CYCLOPENTA[B]PYRIDINE 1-OXIDE

C8H9NO (135.0684104)


   
   

6,7-DIHYDRO-2H-ISOINDOL-4(5H)-ONE

6,7-DIHYDRO-2H-ISOINDOL-4(5H)-ONE

C8H9NO (135.0684104)


   
   

1-(4-Pyridyl)acetone

1-(4-Pyridyl)acetone

C8H9NO (135.0684104)


   

5-(2-FURYL)-1,3-OXAZOLE

5-(2-FURYL)-1,3-OXAZOLE

C7H5NO2 (135.032027)


   

1,2,4-Triazolo[4,3-apyrazin-8-amine

1,2,4-Triazolo[4,3-apyrazin-8-amine

C5H5N5 (135.054493)


   

5-Amino-2,3-dihydrobenzo[b]furan

5-Amino-2,3-dihydrobenzo[b]furan

C8H9NO (135.0684104)


   
   

2,3-dihydro-1H-indol-4-ol

2,3-dihydro-1H-indol-4-ol

C8H9NO (135.0684104)


   

Thiomorpholine 1,1-dioxide

Thiomorpholine 1,1-dioxide

C4H9NO2S (135.0353974)


   

Imidazo[1,2-a]pyrimidin-5(1H)-one

Imidazo[1,2-a]pyrimidin-5(1H)-one

C6H5N3O (135.04326)


   

(1H-TETRAZOL-5-YL)METHANAMINE HYDROCHLORIDE

(1H-TETRAZOL-5-YL)METHANAMINE HYDROCHLORIDE

C2H6ClN5 (135.0311706)


   

OXAZOLO[5,4-B]PYRIDIN-2-AMINE

OXAZOLO[5,4-B]PYRIDIN-2-AMINE

C6H5N3O (135.04326)


   

5-acetylfuran-2-carbonitrile

5-acetylfuran-2-carbonitrile

C7H5NO2 (135.032027)


   

Furo[2,3-b]pyridin-3(2H)-one

Furo[2,3-b]pyridin-3(2H)-one

C7H5NO2 (135.032027)


   

1H-pyrazolo[3,4-b]pyridin-5-ol

1H-pyrazolo[3,4-b]pyridin-5-ol

C6H5N3O (135.04326)


   

4-VINYLOXY-PHENYLAMINE

4-VINYLOXY-PHENYLAMINE

C8H9NO (135.0684104)


   

D-Homocysteine

(R)-2-AMINO-4-MERCAPTOBUTANOIC ACID

C4H9NO2S (135.0353974)


   

3,4-DIHYDRO-2H-BENZO[E][1,3]OXAZINE

3,4-DIHYDRO-2H-BENZO[E][1,3]OXAZINE

C8H9NO (135.0684104)


   

3-aza-tricyclo[4.2.1.0(2,5)]non-7-en-4-one

3-aza-tricyclo[4.2.1.0(2,5)]non-7-en-4-one

C8H9NO (135.0684104)


   

6,7-Dihydro-5H-cyclopenta[b]pyridin-7-ol

6,7-Dihydro-5H-cyclopenta[b]pyridin-7-ol

C8H9NO (135.0684104)


   

4-Fluoro-3-methylbenzonitrile

4-Fluoro-3-methylbenzonitrile

C8H6FN (135.0484248)


   

BENZOOXAZOL-4-OL

BENZOOXAZOL-4-OL

C7H5NO2 (135.032027)


   

2-Mercapto-5-thiazolidone

2-Mercapto-5-thiazolidone

C3H5NOS2 (134.981256)


   

imidazo[4,5-d]triazin-4-one

imidazo[4,5-d]triazin-4-one

C4HN5O (135.0181096)


   

2-ethenyl-6-methoxypyridine

2-ethenyl-6-methoxypyridine

C8H9NO (135.0684104)


   

2-chloro-n,n-dimethyl-propanamid

2-chloro-n,n-dimethyl-propanamid

C5H10ClNO (135.045088)


   

2-chloro-N-ethylpropionamide

2-chloro-N-ethylpropionamide

C5H10ClNO (135.045088)


   

1H-Imidazo[4,5-b]pyridin-2(3H)-one

1H-Imidazo[4,5-b]pyridin-2(3H)-one

C6H5N3O (135.04326)


   

1H-IMIDAZO[4,5-B]PYRAZIN-2-AMINE

1H-IMIDAZO[4,5-B]PYRAZIN-2-AMINE

C5H5N5 (135.054493)


   

3,N4-ethenocytosine

imidazo[1,2-c]pyrimidin-5(6H)-one

C6H5N3O (135.04326)


   

1,4-Oxathiane, 4,4-dihydro-4-imino-, 4-oxide

1,4-Oxathiane, 4,4-dihydro-4-imino-, 4-oxide

C4H9NO2S (135.0353974)


   

2-AMINO-1H-IMIDAZOL-5(4H)-ONE HYDROCHLORIDE

2-AMINO-1H-IMIDAZOL-5(4H)-ONE HYDROCHLORIDE

C3H6ClN3O (135.0199376)


   

N-Methylbenzamide

N-Methylbenzamide

C8H9NO (135.0684104)


N-Methylbenzamide is a potent phosphodiesterase 10A (PDE10A) inhibitor. N-Methylbenzamide has anti-cancer activity[1][2].

   

(4-AMINO-PHENYL)-ACETALDEHYDE

(4-AMINO-PHENYL)-ACETALDEHYDE

C8H9NO (135.0684104)


   

6-Aminopurine phosphate

6-Aminopurine phosphate

C5H5N5 (135.054493)


   

Isoxazolo[5,4-c]pyridin-3-amine

Isoxazolo[5,4-c]pyridin-3-amine

C6H5N3O (135.04326)


   

5-(1H-PYRROL-2-YL)-1H-TETRAZOLE

5-(1H-PYRROL-2-YL)-1H-TETRAZOLE

C5H5N5 (135.054493)


   

5-Fluoro-2-methylbenzonitrile

5-Fluoro-2-methylbenzonitrile

C8H6FN (135.0484248)


   

2-Pyridinecarboxaldehyde,3,5-dimethyl-(9CI)

2-Pyridinecarboxaldehyde,3,5-dimethyl-(9CI)

C8H9NO (135.0684104)


   

Pyridine-3,5-dicarboxaldehyde

Pyridine-3,5-dicarboxaldehyde

C7H5NO2 (135.032027)


   

2,5-dihydroxybenzonitrile

2,5-dihydroxybenzonitrile

C7H5NO2 (135.032027)


   

4-Fluoroindole

4-Fluoroindole

C8H6FN (135.0484248)


   

pyrithione sodium

pyrithione sodium

C5H4NaOS (134.9880554)


   

3-(Pyridin-3-yl)propanal ,98

3-(Pyridin-3-yl)propanal ,98

C8H9NO (135.0684104)


   

3H-IMIDAZO[4,5-B]PYRIDIN-6-OL

3H-IMIDAZO[4,5-B]PYRIDIN-6-OL

C6H5N3O (135.04326)


   

2,4-Dihydroxybenzonitrile

2,4-Dihydroxybenzonitrile

C7H5NO2 (135.032027)


   

Isopelletierine

Isopelletierine

C8H9NO (135.0684104)


   

Pyridine,2-(2-propen-1-yloxy)-

Pyridine,2-(2-propen-1-yloxy)-

C8H9NO (135.0684104)


   

4-Aminoacetophenone

4-Aminoacetophenone

C8H9NO (135.0684104)


   

5-Methoxy-2-pyrimidinecarbonitrile

5-Methoxy-2-pyrimidinecarbonitrile

C6H5N3O (135.04326)


   

1H-Imidazole-1-carboximidamide,N-cyano-

1H-Imidazole-1-carboximidamide,N-cyano-

C5H5N5 (135.054493)


   

Pyrazolo[1,5-a]pyrimidin-5-ol

Pyrazolo[1,5-a]pyrimidin-5-ol

C6H5N3O (135.04326)


   

PYRAZOLO[1,5-A]PYRIMIDIN-7(4H)-ONE

PYRAZOLO[1,5-A]PYRIMIDIN-7(4H)-ONE

C6H5N3O (135.04326)


   

IMIDAZO[4,5-B]PYRIDIN-5-OL

IMIDAZO[4,5-B]PYRIDIN-5-OL

C6H5N3O (135.04326)


   

1H-Pyrazolo[3,4-b]pyridin-3(2H)-one

1H-Pyrazolo[3,4-b]pyridin-3(2H)-one

C6H5N3O (135.04326)


   

Imidazo[1,2-b]pyridazin-6-ol

Imidazo[1,2-b]pyridazin-6-ol

C6H5N3O (135.04326)


   

2-Fluoro-3-methylbenzonitrile

2-Fluoro-3-methylbenzonitrile

C8H6FN (135.0484248)


   

2-Fluoro-6-methylbenzonitrile

2-Fluoro-6-methylbenzonitrile

C8H6FN (135.0484248)


   

1H-Imidazo[4,5-c]pyridin-4-ol

1H-Imidazo[4,5-c]pyridin-4-ol

C6H5N3O (135.04326)


   

2,4-Diamino-5-cyanopyrimidine

2,4-Diamino-5-cyanopyrimidine

C5H5N5 (135.054493)


   

2-aminocyclopentan-1-one

2-aminocyclopentan-1-one

C5H10ClNO (135.045088)


   

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptaneHCl

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptaneHCl

C5H10ClNO (135.045088)


   

Furo[3,4-b]pyridin-7(5H)-one

Furo[3,4-b]pyridin-7(5H)-one

C7H5NO2 (135.032027)


   

Oxazolo[5,4-c]pyridin-2-amine

Oxazolo[5,4-c]pyridin-2-amine

C6H5N3O (135.04326)


   

1,3-Dihydro-2H-Imidazo[4,5-c]Pyridin-2-One

1,3-Dihydro-2H-Imidazo[4,5-c]Pyridin-2-One

C6H5N3O (135.04326)


   

1-(4-Pyridinyl)-1-propanone

1-(4-Pyridinyl)-1-propanone

C8H9NO (135.0684104)


   

7-Fluoro-1H-indole

7-Fluoro-1H-indole

C8H6FN (135.0484248)


   

5-Pyrimidinecarbonitrile, 4-methoxy- (8CI)

5-Pyrimidinecarbonitrile, 4-methoxy- (8CI)

C6H5N3O (135.04326)


   

4-Hydroxy-2-methylpyrimidine-5-carbonitrile

4-Hydroxy-2-methylpyrimidine-5-carbonitrile

C6H5N3O (135.04326)


   

1h-Pyrazolo[3,4-B]Pyridin-3-Ol

1h-Pyrazolo[3,4-B]Pyridin-3-Ol

C6H5N3O (135.04326)


   

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptane HCl

(1S,4S)-2-Oxa-5-azabicyclo[2.2.1]heptane HCl

C5H10ClNO (135.045088)


   

3,5-Dihydroxybenzonitrile

3,5-Dihydroxybenzonitrile

C7H5NO2 (135.032027)


   

4-Pyridinepropanal(9CI)

4-Pyridinepropanal(9CI)

C8H9NO (135.0684104)


   

5-Pyrimidinecarbonitrile, 4,6-diamino- (9CI)

5-Pyrimidinecarbonitrile, 4,6-diamino- (9CI)

C5H5N5 (135.054493)


   

1H-1,2,4-Triazolo[3,4-b][1,3,5]triazepine(9CI)

1H-1,2,4-Triazolo[3,4-b][1,3,5]triazepine(9CI)

C5H5N5 (135.054493)


   

[1,2,4]Triazolo[1,5-a]pyrazin-2-amine

[1,2,4]Triazolo[1,5-a]pyrazin-2-amine

C5H5N5 (135.054493)


   

FURO[3,2-B]PYRIDINE 4-OXIDE

FURO[3,2-B]PYRIDINE 4-OXIDE

C7H5NO2 (135.032027)


   

1-methylpyrrolidin-3-one,hydrochloride

1-methylpyrrolidin-3-one,hydrochloride

C5H10ClNO (135.045088)


   

Thieno[2,3-c]pyridine

Thieno[2,3-c]pyridine

C7H5NS (135.014269)


   

Thieno[3,2-c]pyridine

Thieno[3,2-c]pyridine

C7H5NS (135.014269)


   

2,3-Dihydroindol-5-ol

2,3-Dihydroindol-5-ol

C8H9NO (135.0684104)


   

8-Aminopurine

8-Aminopurine

C5H5N5 (135.054493)


   

4-Oxopiperidinium chloride

4-Oxopiperidinium chloride

C5H10ClNO (135.045088)


   

2-Methylbenzamide

2-Methylbenzamide

C8H9NO (135.0684104)


   

2-Aminopurine

2-Aminopurine

C5H5N5 (135.054493)


D009676 - Noxae > D000963 - Antimetabolites

   

3-Pyridazinecarbonitrile, 6-hydrazino

3-Pyridazinecarbonitrile, 6-hydrazino

C5H5N5 (135.054493)


   

1-chloro-3-isothiocyanatopropane

1-chloro-3-isothiocyanatopropane

C4H6ClNS (134.9909466)


   

3-Chloro-N,N-diMethylpropanamide

3-Chloro-N,N-diMethylpropanamide

C5H10ClNO (135.045088)


   

BENZO[C]ISOXAZOL-5-OL

BENZO[C]ISOXAZOL-5-OL

C7H5NO2 (135.032027)


   

Pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one

Pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one

C6H5N3O (135.04326)


   

2-methyl-3,5,7,8,9-pentazabicyclo[4.3.0]nona-2,4,6,8-tetraene

2-methyl-3,5,7,8,9-pentazabicyclo[4.3.0]nona-2,4,6,8-tetraene

C5H5N5 (135.054493)


   

2-[(2-hydroxyethyl)thio]acetamide

2-[(2-hydroxyethyl)thio]acetamide

C4H9NO2S (135.0353974)


   

N-Allylmethanesulfonamide

N-Allylmethanesulfonamide

C4H9NO2S (135.0353974)


   

hexahydro-2H-azepin-2-one, sodium salt

hexahydro-2H-azepin-2-one, sodium salt

C6H10NNaO (135.066005)


   

N-methyl-N-phenylformamide

N-methyl-N-phenylformamide

C8H9NO (135.0684104)


   

Furo[3,2-c]pyridin-3(2H)-one(9CI)

Furo[3,2-c]pyridin-3(2H)-one(9CI)

C7H5NO2 (135.032027)


   

3-(trifluoromethyl)-1H-pyrrole

3-(trifluoromethyl)-1H-pyrrole

C5H4F3N (135.029582)


   

[1,2,4]Triazolo[4,3-a]pyridin-3(2H)-one

[1,2,4]Triazolo[4,3-a]pyridin-3(2H)-one

C6H5N3O (135.04326)


   

Ethenesulfonic acid dimethylamide

Ethenesulfonic acid dimethylamide

C4H9NO2S (135.0353974)


   

Furo[3,4-b]pyridin-5(7H)-one

Furo[3,4-b]pyridin-5(7H)-one

C7H5NO2 (135.032027)


   

6-HYDROXY-1,2-BENZISOXAZOLE

6-HYDROXY-1,2-BENZISOXAZOLE

C7H5NO2 (135.032027)


   

2-cyano-2-hydroxyiminoacetamide sodium salt

2-cyano-2-hydroxyiminoacetamide sodium salt

C3H2N3NaO2 (135.0044712)


   

6-Methoxy-pyrazine-2-carbonitrile

6-Methoxy-pyrazine-2-carbonitrile

C6H5N3O (135.04326)


   

Imidazo[1,2-A]Pyrazin-8-Ol

Imidazo[1,2-A]Pyrazin-8-Ol

C6H5N3O (135.04326)


   

3-Fluoro-5-methylbenzonitrile

3-Fluoro-5-methylbenzonitrile

C8H6FN (135.0484248)


   

3,5-Dimethylisonicotinaldehyde

3,5-Dimethylisonicotinaldehyde

C8H9NO (135.0684104)


   

2,3-dihydro-1H-indol-7-ol

2,3-dihydro-1H-indol-7-ol

C8H9NO (135.0684104)


   

7H-Purin-6-amine

7H-Purin-6-amine

C5H5N5 (135.054493)


   

3-Pyridinemethanol,alpha-ethenyl-(9CI)

3-Pyridinemethanol,alpha-ethenyl-(9CI)

C8H9NO (135.0684104)


   

5H-Pyrrolo[2,3-d]pyrimidin-5-one, 6,7-dihydro- (9CI)

5H-Pyrrolo[2,3-d]pyrimidin-5-one, 6,7-dihydro- (9CI)

C6H5N3O (135.04326)


   

Pyrazolo[1,5-a]pyrimidin-5(4H)-one,2-amino-6,7-dihydro-

Pyrazolo[1,5-a]pyrimidin-5(4H)-one,2-amino-6,7-dihydro-

C6H5N3O (135.04326)


   

5,6-Dimethylnicotinaldehyde

5,6-Dimethylnicotinaldehyde

C8H9NO (135.0684104)


   

3-Aminocyclopentanone hydrochloride

3-Aminocyclopentanone hydrochloride

C5H10ClNO (135.045088)


   

2-Sulfanylbenzonitrile

2-Sulfanylbenzonitrile

C7H5NS (135.014269)


   

cyclobutanesulfonamide

cyclobutanesulfonamide

C4H9NO2S (135.0353974)


   

pyridine-2,3-dicarbaldehyde

pyridine-2,3-dicarbaldehyde

C7H5NO2 (135.032027)


   

3-Ethynyl-4-fluoroaniline

3-Ethynyl-4-fluoroaniline

C8H6FN (135.0484248)


   

Phenyl isothiocyanate

Phenyl isothiocyanate

C7H5NS (135.014269)


   

3,4-Dihydroxybenzonitrile

3,4-Dihydroxybenzonitrile

C7H5NO2 (135.032027)


   

ISOXAZOLO[5,4-B]PYRIDIN-3-AMINE

ISOXAZOLO[5,4-B]PYRIDIN-3-AMINE

C6H5N3O (135.04326)


   
   

2-Fluoro-5-methylbenzonitrile

2-Fluoro-5-methylbenzonitrile

C8H6FN (135.0484248)


   

2-(3-Fluorophenyl)acetonitrile

2-(3-Fluorophenyl)acetonitrile

C8H6FN (135.0484248)


   

2-Fluoro-4-methylbenzonitrile

2-Fluoro-4-methylbenzonitrile

C8H6FN (135.0484248)


   

2-aminothiophene hydrochloride

2-aminothiophene hydrochloride

C4H6ClNS (134.9909466)


   

Furo[3,2-c]pyridin-4(5H)-one

Furo[3,2-c]pyridin-4(5H)-one

C7H5NO2 (135.032027)


   

5H-pyrrolo[3,2-d]pyrimidin-4-ol

5H-pyrrolo[3,2-d]pyrimidin-4-ol

C6H5N3O (135.04326)


   

benzo[d]isoxazol-7-ol

benzo[d]isoxazol-7-ol

C7H5NO2 (135.032027)


   

3-Fluoro-2-methylbenzonitrile

3-Fluoro-2-methylbenzonitrile

C8H6FN (135.0484248)


   
   

[1,2,4]TRIAZOLO[1,5-A]PYRIMIDIN-7-AMINE

[1,2,4]TRIAZOLO[1,5-A]PYRIMIDIN-7-AMINE

C5H5N5 (135.054493)


   

2H-Cyclopenta[b]pyridin-2-one,1,5,6,7-tetrahydro-

2H-Cyclopenta[b]pyridin-2-one,1,5,6,7-tetrahydro-

C8H9NO (135.0684104)


   

2(1H)-Pyrimidinone,4-amino-1-ethynyl-

2(1H)-Pyrimidinone,4-amino-1-ethynyl-

C6H5N3O (135.04326)


   

1,7-dihydro-6H-purin-6-one (hypoxanthine)

1,7-dihydro-6H-purin-6-one (hypoxanthine)

C5H3N4O (135.0306848)


   

2-oxa-5-azabicyclo[4.1.0]heptane hydrochloride

2-oxa-5-azabicyclo[4.1.0]heptane hydrochloride

C5H10ClNO (135.045088)


   

Benzaldehyde, 2-amino-6-methyl-

Benzaldehyde, 2-amino-6-methyl-

C8H9NO (135.0684104)


   

Pyrazolo[1,5-a]pyriMidin-5(4H)-one

Pyrazolo[1,5-a]pyriMidin-5(4H)-one

C6H5N3O (135.04326)


   

3-chloro-N-ethylpropanaMide

3-chloro-N-ethylpropanaMide

C5H10ClNO (135.045088)


   

3,7,8,9-tetrazabicyclo[4.3.0]nona-2,4,6,9-tetraen-2-amine

3,7,8,9-tetrazabicyclo[4.3.0]nona-2,4,6,9-tetraen-2-amine

C5H5N5 (135.054493)


   

2,6-Dimethylpyridine-4-carboxaldehyde

2,6-Dimethylpyridine-4-carboxaldehyde

C8H9NO (135.0684104)


   

2,3-dihydrobenzofuran-6-amine

2,3-dihydrobenzofuran-6-amine

C8H9NO (135.0684104)


   

2,5-Dihydro-4H-pyrazolo[4,3-c]pyridin-4-one

2,5-Dihydro-4H-pyrazolo[4,3-c]pyridin-4-one

C6H5N3O (135.04326)


   

3-fluoroindole

3-fluoroindole

C8H6FN (135.0484248)


   

3,4-Dihydro-2H-1,4-benzoxazine

3,4-Dihydro-2H-1,4-benzoxazine

C8H9NO (135.0684104)


   

2,4-DIMETHYLNICOTINALDEHYDE

2,4-DIMETHYLNICOTINALDEHYDE

C8H9NO (135.0684104)


   
   

2,1,3-Benzoxadiazol-5-amine

2,1,3-Benzoxadiazol-5-amine

C6H5N3O (135.04326)


   

1-(PYRIDIN-2-YL)PROPAN-1-ONE

1-(PYRIDIN-2-YL)PROPAN-1-ONE

C8H9NO (135.0684104)


   

2-(trifluoromethyl)-1H-pyrrole

2-(trifluoromethyl)-1H-pyrrole

C5H4F3N (135.029582)


   

Polyethyleneimine

Polyethyleneimine

C5H10ClNO (135.045088)


   

1-h-pyrazolo[3,4-b]pyridin-4-ol

1-h-pyrazolo[3,4-b]pyridin-4-ol

C6H5N3O (135.04326)


   

6-methyltetrazolo[1,5-b]pyridazine

6-methyltetrazolo[1,5-b]pyridazine

C5H5N5 (135.054493)


   

Pyrrolo[2,3-d]pyrimidin-4-ol

Pyrrolo[2,3-d]pyrimidin-4-ol

C6H5N3O (135.04326)


   

N-Methylformanilide

N-Methylformanilide

C8H9NO (135.0684104)


   

2,3-Dihydro-1-benzofuran-3-amine

2,3-Dihydro-1-benzofuran-3-amine

C8H9NO (135.0684104)


   

2-(4-PYRIDYL) ALLYL ALCOHOL

2-(4-PYRIDYL) ALLYL ALCOHOL

C8H9NO (135.0684104)


   

1,3-Dihydroisobenzofuran-5-ylamine

1,3-Dihydroisobenzofuran-5-ylamine

C8H9NO (135.0684104)


   

2-Methyl-2-Nitro-1,3-Propanediol

2-Methyl-2-Nitro-1,3-Propanediol

C4H9NO4 (135.0531554)


   

2,3-DIHYDROBENZO[B]FURAN-7-YLAMINE

2,3-DIHYDROBENZO[B]FURAN-7-YLAMINE

C8H9NO (135.0684104)


   

Thieno[2,3-b]pyridine

Thieno[2,3-b]pyridine

C7H5NS (135.014269)


   

1,3-Dihydro-2-benzofuran-4-amine

1,3-Dihydro-2-benzofuran-4-amine

C8H9NO (135.0684104)


   

2-Propen-1-ol,3-(2-pyridinyl)-(9CI)

2-Propen-1-ol,3-(2-pyridinyl)-(9CI)

C8H9NO (135.0684104)


   

1H-Benzotriazol-1-ol

1H-Benzotriazol-1-ol

C6H5N3O (135.04326)


   

5-Pyrimidinecarbonitrile, 2-hydrazino- (9CI)

5-Pyrimidinecarbonitrile, 2-hydrazino- (9CI)

C5H5N5 (135.054493)


   
   

3-(Dimethyl-Lambda~4~-Sulfanyl)propanoic Acid

3-(Dimethyl-Lambda~4~-Sulfanyl)propanoic Acid

C5H11O2S+ (135.0479726)


   
   

2-Hydroxy-3-nitropropanoic acid

2-Hydroxy-3-nitropropanoic acid

C3H5NO5 (135.016772)


   

rel-(2S,3R)-2-Amino-3,4-dihydroxybutanoic acid

rel-(2S,3R)-2-Amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0531554)


   

Pyrrolo[1,2-d][1,2,4]triazin-4(3H)-one

Pyrrolo[1,2-d][1,2,4]triazin-4(3H)-one

C6H5N3O (135.04326)


   

Methyl N-phenylformimidate

Methyl N-phenylformimidate

C8H9NO (135.0684104)


   

(Carboxyhydroxyamino)ethanoic acid

(Carboxyhydroxyamino)ethanoic acid

C3H5NO5 (135.016772)


   

(3R)-3-amino-4-sulfanylbutanoic acid

(3R)-3-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0353974)


   

Adenin

InChI=1\C5H5N5\c6-4-3-5(9-1-7-3)10-2-8-4\h1-2H,(H3,6,7,8,9,10

C5H5N5 (135.054493)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

o-2857

4-27-00-01069 (Beilstein Handbook Reference)

C7H5NS (135.014269)


Benzothiazole is a natural occurring heterocyclic nuclei. Benzothiazole nucleus possesses a number of biological activities such as anticancer, antimicrobial, antidiabetic, anti-inflammatory, antileishmanial, and antiviral[1].

   

272-16-2

Benzo[d]isothiazole

C7H5NS (135.014269)


   

Hydroxymethylserine

Hydroxymethylserine

C4H9NO4 (135.0531554)


   

Benzeneacetate

Benzeneacetate

C8H7O2- (135.0446022)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Z-Phenylacetaldoxime

(Z)-Phenylacetaldehyde oxime

C8H9NO (135.0684104)


   

(2S)-2-azaniumyl-4-sulfanylbutanoate

(2S)-2-azaniumyl-4-sulfanylbutanoate

C4H9NO2S (135.0353974)


   

(2R)-2-azaniumyl-3-(methylsulfanyl)propanoate

(2R)-2-azaniumyl-3-(methylsulfanyl)propanoate

C4H9NO2S (135.0353974)


   

m-Methylbenzoate

m-Methylbenzoate

C8H7O2- (135.0446022)


   

(2R,3S)-2,3,4-Trihydroxybutanoate

(2R,3S)-2,3,4-Trihydroxybutanoate

C4H7O5- (135.02934720000002)


   

D-Erythronate

D-Erythronate

C4H7O5- (135.02934720000002)


An erythronate that is the conjugate base of D-erythronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(2S)-2-azaniumyl-3-methylsulfanylpropanoate

(2S)-2-azaniumyl-3-methylsulfanylpropanoate

C4H9NO2S (135.0353974)


   

3-Hydroxyhomoserine

3-Hydroxyhomoserine

C4H9NO4 (135.0531554)


   

2-Methylbenzoate

2-Methylbenzoate

C8H7O2- (135.0446022)


   

(2R)-2-azaniumyl-4-sulfanylbutanoate

(2R)-2-azaniumyl-4-sulfanylbutanoate

C4H9NO2S (135.0353974)


   
   
   

1H-imidazo[4,5-c]pyridin-5-ium-4-amine

1H-imidazo[4,5-c]pyridin-5-ium-4-amine

C6H7N4+ (135.0670682)


   

4-hydroxy-L-allo-threonine

4-hydroxy-L-allo-threonine

C4H9NO4 (135.0531554)


   

4-[(Z)-2-aminoethenyl]phenol

4-[(Z)-2-aminoethenyl]phenol

C8H9NO (135.0684104)


   

2-Ammonio-4-sulfanylbutanoate

2-Ammonio-4-sulfanylbutanoate

C4H9NO2S (135.0353974)


   

Phenyl acetimidate

Phenyl acetimidate

C8H9NO (135.0684104)


   

1,3,5-Triazinane-1,3,5-triol

1,3,5-Triazinane-1,3,5-triol

C3H9N3O3 (135.0643884)


   

p-Hydroxystyrylamine

p-Hydroxystyrylamine

C8H9NO (135.0684104)


   

1-Aminocyclopropylphosphonate(2-)

1-Aminocyclopropylphosphonate(2-)

C3H6NO3P-2 (135.0085296)


   
   

2-(Methyliminomethyl)phenol

2-(Methyliminomethyl)phenol

C8H9NO (135.0684104)


   

N-(2-Phenylethylidene)hydroxylamine

N-(2-Phenylethylidene)hydroxylamine

C8H9NO (135.0684104)


   

alpha-(Hydroxymethyl)serine

alpha-(Hydroxymethyl)serine

C4H9NO4 (135.0531554)


   

4-Hydroxy-L-threonine

4-Hydroxy-L-threonine

C4H9NO4 (135.0531554)


A hydroxy-amino acid consisting of L-threonine having a hydroxy substituent at the 4-position.

   

O-Aminoacetophenone

O-Aminoacetophenone

C8H9NO (135.0684104)


An aromatic ketone that is acetophenone in which one of the ortho hydrogens of the phenyl group has been replaced by an amino group.

   

S-methylcysteine zwitterion

S-methylcysteine zwitterion

C4H9NO2S (135.0353974)


An S-alkyl-L-cysteine zwitterion obtained by transfer of a proton from the carboxy to the amino group of S-methylcysteine; major species at pH 7.3.

   

m-toluate

m-toluate

C8H7O2 (135.0446022)


A toluate that is the conjugate base of m-toluic acid.

   

L-Threonate

L-Threonate

C4H7O5 (135.02934720000002)


Conjugate base of L-threonic acid.

   

Benzo[d]isoxazol-3-ol

Benzo[d]isoxazol-3-ol

C7H5NO2 (135.032027)


   

2-Acetyl-6-methylpyridine

1-(6-Methylpyridin-2-yl)ethanon

C8H9NO (135.0684104)


   

2-Acetyl-4-methylpyridine

1-(4-Methyl-2-pyridinyl)ethanone

C8H9NO (135.0684104)


   

2,3-dihydro-1H-pyrrolizine-5-carbaldehyde

2,3-dihydro-1H-pyrrolizine-5-carbaldehyde

C8H9NO (135.0684104)


   

2-Acetyl-5-methylpyridine

1-(5-Methylpyridin-2-yl)ethanone

C8H9NO (135.0684104)


   

4-Acetyl-3-methylpyridine

4-Acetyl-3-methylpyridine

C8H9NO (135.0684104)


   

4-(hydroxymethyl)benzenediazonium

4-(hydroxymethyl)benzenediazonium

C7H7N2O+ (135.0558352)


   

5-(furan-2-yl)-3,4-dihydro-2H-pyrrole

5-(furan-2-yl)-3,4-dihydro-2H-pyrrole

C8H9NO (135.0684104)


   

4-Acetyl-2-methylpyridine

1-(2-Methyl-4-Pyridinyl)Ethanone

C8H9NO (135.0684104)


   

Benzeneacetaldehyde, oxime

Benzeneacetaldehyde, oxime

C8H9NO (135.0684104)


   

homocysteine zwitterion

homocysteine zwitterion

C4H9NO2S (135.0353974)


An amino acid zwitterion of homocysteine arising from transfer of a proton from the carboxy to the amino group; major species at pH 7.3.

   

S-hydroxy-S-oxy-L-cysteine residue

S-hydroxy-S-oxy-L-cysteine residue

C3H5NO3S (134.99901400000002)


An alpha-amino-acid residue derived from S-hydroxy-S-oxy-L-cysteine.

   

Phenylacetate

Phenylacetate

C8H7O2 (135.0446022)


A monocarboxylic acid anion that is the conjugate base of phenylacetic acid.

   

L-homocysteine zwitterion

L-homocysteine zwitterion

C4H9NO2S (135.0353974)


An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of L-homocysteine; major species at pH 7.3.

   

4-hydroxy-L-threonine zwitterion

4-hydroxy-L-threonine zwitterion

C4H9NO4 (135.0531554)


An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of 4-hydroxy-L-threonine; major species at pH 7.3.

   

O-Toluate

O-Toluate

C8H7O2 (135.0446022)


A toluate that is the conjugate base of o-toluic acid.

   

S-methylcysteine

S-methylcysteine

C4H9NO2S (135.0353974)


A cysteine derivative that is L-cysteine in which the hydrogen attached to the sulfur is replaced by a methyl group.

   

4-Hydroxythreonine

4-Hydroxythreonine

C4H9NO4 (135.0531554)


   

Hydroxythreonine

Hydroxythreonine

C4H9NO4 (135.0531554)


   

Aminoacetophenone

Aminoacetophenone

C8H9NO (135.0684104)


   
   

n-(2-methylpropyl)methanesulfinamide

n-(2-methylpropyl)methanesulfinamide

C5H13NOS (135.0717808)


   

α-hydroxymethylserine

alpha-hydroxymethylserine

C4H9NO4 (135.0531554)


{"Ingredient_id": "HBIN015557","Ingredient_name": "\u03b1-hydroxymethylserine","Alias": "alpha-hydroxymethylserine","Ingredient_formula": "C4H9NO4","Ingredient_Smile": "CNC(CO)(C(=O)O)O","Ingredient_weight": "135.12 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15891","TCMID_id": "31238;10520","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "129856910","DrugBank_id": "NA"}

   

7-methyl-2,3-dihydropyrrolizin-1-one

7-methyl-2,3-dihydropyrrolizin-1-one

C8H9NO (135.0684104)


   

(2s,3r)-3-hydroxy-2-(hydroxyamino)butanoic acid

(2s,3r)-3-hydroxy-2-(hydroxyamino)butanoic acid

C4H9NO4 (135.0531554)


   

2-phenylethanimidic acid

2-phenylethanimidic acid

C8H9NO (135.0684104)


   

octa-2,4-diynimidic acid

octa-2,4-diynimidic acid

C8H9NO (135.0684104)


   

1h,3h-imidazo[4,5-d]pyridazin-2-imine

1h,3h-imidazo[4,5-d]pyridazin-2-imine

C5H5N5 (135.054493)


   

(2r,3s)-2-amino-3,4-dihydroxybutanoic acid

(2r,3s)-2-amino-3,4-dihydroxybutanoic acid

C4H9NO4 (135.0531554)


   

2,3-dihydro-1h-indol-5-ol

2,3-dihydro-1h-indol-5-ol

C8H9NO (135.0684104)


   

2,3,4-trihydroxybutanimidic acid

2,3,4-trihydroxybutanimidic acid

C4H9NO4 (135.0531554)


   

3-acetyl-6-methylpyridine

3-acetyl-6-methylpyridine

C8H9NO (135.0684104)


   

4-[(1e)-2-aminoethenyl]phenol

4-[(1e)-2-aminoethenyl]phenol

C8H9NO (135.0684104)