Exact Mass: 1113.4071336
Exact Mass Matches: 1113.4071336
Found 87 metabolites which its exact mass value is equals to given mass value 1113.4071336
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid thioester of coenzyme A. 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA into 13-(3-methyl-5-pentylfuran-2-yl)tridecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 13-(3-methyl-5-pentylfuran-2-yl)tridecanoylcarnitine is converted back to 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA occurs in four steps. First, since 13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes d...
11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 11-(5-hexyl-3_4-dimethylfuran-2-yl)undecanoic acid thioester of coenzyme A. 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-coa is an acyl-CoA with 21 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA into 11-(5-hexyl-3_4-dimethylfuran-2-yl)undecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 11-(5-hexyl-3_4-dimethylfuran-2-yl)undecanoylcarnitine is converted back to 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA occurs in four steps. First, since 11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA is a very long chain acyl-CoA it is the substrate for a very ...
11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 11-(5-heptyl-3-methylfuran-2-yl)undecanoic acid thioester of coenzyme A. 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-coa is an acyl-CoA with 22 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA into 11-(5-heptyl-3-methylfuran-2-yl)undecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 11-(5-heptyl-3-methylfuran-2-yl)undecanoylcarnitine is converted back to 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA occurs in four steps. First, since 11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA is a very long chain acyl-CoA it is the substrate for a very long chain acyl-CoA dehydrogenase, whic...
12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 12-(3_4-dimethyl-5-pentylfuran-2-yl)dodecanoic acid thioester of coenzyme A. 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-coa is an acyl-CoA with 21 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA into 12-(3_4-dimethyl-5-pentylfuran-2-yl)dodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 12-(3_4-dimethyl-5-pentylfuran-2-yl)dodecanoylcarnitine is converted back to 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA occurs in four steps. First, since 12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA is a very long chain acyl-CoA it is the substrate...
13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
11-(5-heptyl-3-methylfuran-2-yl)undecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
11-(5-hexyl-3,4-dimethylfuran-2-yl)undecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)
12-(3,4-dimethyl-5-pentylfuran-2-yl)dodecanoyl-CoA
C44H74N7O18P3S (1113.4023694000002)