Exact Mass: 1109.3347
Exact Mass Matches: 1109.3347
Found 6 metabolites which its exact mass value is equals to given mass value 1109.3347
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
(5Z,7S,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-CoA
(5z,7s,8e,10z,13z,15e,17s,19z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_7S_8E_10Z_13Z_15E_17S_19Z)-7_17-dihydroxydocosa-5_8_10_13_15_19-hexaenoic acid thioester of coenzyme A. (5z,7s,8e,10z,13z,15e,17s,19z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-coa is an acyl-CoA with 22 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,7s,8e,10z,13z,15e,17s,19z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,7s,8e,10z,13z,15e,17s,19z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,7S,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,7S,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,7S,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-CoA into (5Z_7S_8E_10Z_13Z_15E_17S_19Z)-7_17-dihydroxydocosa-5_8_10_13_15_19-hexaenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_7S_8E_10Z_13Z_15E_17S_19Z)-7_17-dihydroxydocosa-5_8_10_13_15_19-hexaenoylcarnitine is converte...
9alpha-hydroxy-3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA
A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 9alpha-hydroxy-3-oxo-23,24-bisnorchola-4-en-22-oic acid.
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2S)-2-[(8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]propanethioate
(5Z,7S,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl-CoA
17-hydroxy-3-oxopregn-4-en-20-carboxy-CoA
A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 17-hydroxy-3-oxopregn-4-en-20-carboxylic acid.