Exact Mass: 1047.3554218

Exact Mass Matches: 1047.3554218

Found 23 metabolites which its exact mass value is equals to given mass value 1047.3554218, within given mass tolerance error 4.0E-5 dalton. Try search metabolite list with more accurate mass tolerance error 8.0E-6 dalton.

3-Oxooctadecanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxooctadecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H68N7O18P3S (1047.3554)


3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652) [HMDB] 3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652).

   

18-hydroxyoleoyl-CoA

18-hydroxyoleoyl-CoA

C39H68N7O18P3S (1047.3554)


An omega-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 18-hydroxyoleic acid.

   

(S)-3-hydroxy-11-cis-octadecenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxyoctadec-11-enoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C39H68N7O18P3S (1047.3554)


(S)-3-hydroxy-11-cis-octadecenoyl-CoA is considered to be slightly soluble (in water) and acidic

   

(12E)-9-Hydroxyoctadecenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(9-hydroxyoctadec-12-enoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C39H68N7O18P3S (1047.3554)


(12e)-9-hydroxyoctadecenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (12E)-9-hydroxyoctadec-12-enoic acid thioester of coenzyme A. (12e)-9-hydroxyoctadecenoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (12e)-9-hydroxyoctadecenoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (12e)-9-hydroxyoctadecenoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (12E)-9-Hydroxyoctadecenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (12E)-9-Hydroxyoctadecenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (12E)-9-Hydroxyoctadecenoyl-CoA into (12E)-9-Hydroxyoctadecenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (12E)-9-Hydroxyoctadecenoylcarnitine is converted back to (12E)-9-Hydroxyoctadecenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (12E)-9-Hydroxyoctadecenoyl-CoA occurs in four steps. First, since (12E)-9-Hydroxyoctadecenoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (12E)-9-Hydroxyoctadecenoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition...

   

(12Z)-10-Hydroxyoctadecenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(10-hydroxyoctadec-12-enoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C39H68N7O18P3S (1047.3554)


(12z)-10-hydroxyoctadecenoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (12Z)-10-hydroxyoctadec-12-enoic acid thioester of coenzyme A. (12z)-10-hydroxyoctadecenoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (12z)-10-hydroxyoctadecenoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (12z)-10-hydroxyoctadecenoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (12Z)-10-Hydroxyoctadecenoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (12Z)-10-Hydroxyoctadecenoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (12Z)-10-Hydroxyoctadecenoyl-CoA into (12Z)-10-Hydroxyoctadecenoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (12Z)-10-Hydroxyoctadecenoylcarnitine is converted back to (12Z)-10-Hydroxyoctadecenoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (12Z)-10-Hydroxyoctadecenoyl-CoA occurs in four steps. First, since (12Z)-10-Hydroxyoctadecenoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (12Z)-10-Hydroxyoctadecenoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyze...

   

(9Z)-12-hydroxyoctadec-9-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(12-hydroxyoctadec-9-enoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C39H68N7O18P3S (1047.3554)


(9z)-12-hydroxyoctadec-9-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (9Z)-12-hydroxyoctadec-9-enoic acid thioester of coenzyme A. (9z)-12-hydroxyoctadec-9-enoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (9z)-12-hydroxyoctadec-9-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (9z)-12-hydroxyoctadec-9-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (9Z)-12-hydroxyoctadec-9-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (9Z)-12-hydroxyoctadec-9-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (9Z)-12-hydroxyoctadec-9-enoyl-CoA into (9Z)-12-hydroxyoctadec-9-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (9Z)-12-hydroxyoctadec-9-enoylcarnitine is converted back to (9Z)-12-hydroxyoctadec-9-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (9Z)-12-hydroxyoctadec-9-enoyl-CoA occurs in four steps. First, since (9Z)-12-hydroxyoctadec-9-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (9Z)-12-hydroxyoctadec-9-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, En...

   
   

CoA 18:1;O

16-methyl-3-oxoheptadecanoyl-CoA;16-methyl-3-oxoheptadecanoyl-coenzyme A;3-ketoisooctadecanoyl-CoA;3-ketoisooctadecanoyl-coenzyme A;3-oxoisooctadecanoyl-coenzyme A;3-oxoisostearoyl-CoA;3-oxoisostearoyl-coenzyme A

C39H68N7O18P3S (1047.3554)


A 3-oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-oxooctadecanoic acid.

   

(3S)-3-hydroxyoleoyl-CoA

(3S)-3-hydroxyoleoyl-CoA

C39H68N7O18P3S (1047.3554)


A 3-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (3S)-3-hydroxyoleic acid.

   
   

(S)-3-Hydroxy-11Z-Octadecenoyl-CoA

(S)-3-Hydroxy-11Z-Octadecenoyl-CoA

C39H68N7O18P3S (1047.3554)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 8-(3-octyloxiran-2-yl)octanethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 8-(3-octyloxiran-2-yl)octanethioate

C39H68N7O18P3S (1047.3554)


   

(9Z)-12-hydroxyoctadec-9-enoyl-CoA

(9Z)-12-hydroxyoctadec-9-enoyl-CoA

C39H68N7O18P3S (1047.3554)


   

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-hydroxyoctadec-11-enethioate

S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-hydroxyoctadec-11-enethioate

C39H68N7O18P3S (1047.3554)


   

(12E)-9-Hydroxyoctadecenoyl-CoA

(12E)-9-Hydroxyoctadecenoyl-CoA

C39H68N7O18P3S (1047.3554)


   

(12Z)-10-Hydroxyoctadecenoyl-CoA

(12Z)-10-Hydroxyoctadecenoyl-CoA

C39H68N7O18P3S (1047.3554)


   

(3R,11Z)-3-hydroxyoctadecenoyl-CoA

(3R,11Z)-3-hydroxyoctadecenoyl-CoA

C39H68N7O18P3S (1047.3554)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (3R,11Z)-3-hydroxyoctadecenoic acid.

   

(11Z)-18-hydroxyoctadecenoyl-CoA

(11Z)-18-hydroxyoctadecenoyl-CoA

C39H68N7O18P3S (1047.3554)


An omega-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (11Z)-18-hydroxyoctadecenoic acid.

   

3-Oxo-stearoyl-S-coenzyme A

3-Oxo-stearoyl-S-coenzyme A

C39H68N7O18P3S (1047.3554)


   

3-oxoisooctadecanoyl-CoA

3-oxoisooctadecanoyl-CoA

C39H68N7O18P3S (1047.3554)


A methyl-branched fatty acyl-CoA obtained from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-oxoisooctadecanoic acid.

   
   
   

(2r)-4-[({[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-2-hydroxy-3,3-dimethyl-n-[2-({2-[(3-oxooctadecanoyl)sulfanyl]ethyl}-c-hydroxycarbonimidoyl)ethyl]butanimidic acid

(2r)-4-[({[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-2-hydroxy-3,3-dimethyl-n-[2-({2-[(3-oxooctadecanoyl)sulfanyl]ethyl}-c-hydroxycarbonimidoyl)ethyl]butanimidic acid

C39H68N7O18P3S (1047.3554)