Classification Term: 170055
肉碱衍生物 (ontology term: 2249bd84d0979b63153711da8f407e32)
found 4 associated metabolites at no_class-level_20
metabolite taxonomy ontology rank level.
Ancestor: 脂质和类脂分子
Child Taxonomies: There is no child term of current ontology term.
Stearoylcarnitine
Stearoylcarnitine, also known as acylcarnitine C18:0, is a fatty ester lipid molecule. It is found in significantly greater amounts of patients with carnitine palmitoyltransferase (CPT) II deficiency when compared to controls (PMID:15653102). Stearoylcarnitine is also found to be associated with celiac disease, another inborn error of metabolism. The carnitine palmitoyltransferase (CPT; EC 2.3.1.21) enzyme system, in conjunction with acyl-CoA synthetase and carnitine/acylcarnitine translocase, provides the mechanism whereby long-chain fatty acids are transferred from the cytosol to the mitochondrial matrix to undergo beta-oxidation (OMIM: 600650). Stearoylcarnitine is considered to be practically insoluble in water and acidic. Stearoylcarnitine is found in significantly greater amounts of lpatients with carnitine palmitoyltransferase (CPT) II deficiency when compared to controls. ( PubMed ID 15653102 ). (-)-Stearoylcarnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=25597-09-5 (retrieved 2024-07-10) (CAS RN: 25597-09-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
3-Methylglutarylcarnitine
3-Methylglutarylcarnitine is an acylcarnitine. More specifically, it is an methylglutaric acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Methylglutarylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-methylglutarylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular 3-methylglutarylcarnitine is elevated in the blood or plasma of individuals with psoriasis (PMID: 33391503), CVD (PMID: 32376321), Norman-Roberts syndrome (PMID: 15083694), type 2 diabetes Mellitus (PMID: 20111019, PMID: 19369366, PMID: 29436377), carnitine palmitoyl-trasferase 2 deficiency (PMID: 9657346), Familial Mediterranean Fever (PMID: 29900937), multiple acyl coenzyme A dehydrogenase Deficiency (PMID: 30510944), CVD in type 2 diabetes Mellitus (PMID: 32431666), and gestational diabetes mellitus (PMID: 29436377). It is also decreased in the blood or plasma of individuals with Celiac disease (PMID: 16425363). 3-Methylglutarylcarnitine is elevated in the urine of individuals with medium-chain acyl-CoA dehydrogenase deficiency (PMID: 1635814, PMID: 2246856). 3-Methylglutarylcarnitine is a diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. It is also identified in the urine of patients with Reye-like syndrome (PMID: 3958190 , 10927963 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. 3-Methylglutarylcarnitine is a diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. It is also identified in the urine of patients with Reye like syndrome. (PMID 3958190; 10927963) [HMDB] 3-Methylglutarylcarnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=102673-95-0 (retrieved 2024-07-10) (CAS RN: 102673-95-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
2-Hexenoylcarnitine
2-Hexenoylcarnitine is an acylcarnitine. More specifically, it is an 2-hexenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hexenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-hexenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular 2-hexenoylcarnitine is elevated in the blood or plasma of individuals with obesity in aldolenscens (PMID: 26910390). It is also decreased in the blood or plasma of individuals with adolescent idiopathic scoliosis (PMID: 26928931). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. A human metabolite taken as a putative food compound of mammalian origin [HMDB]
(2,7)-Decadienoylcarnitine
(2,7)-Decadienoylcarnitine is an acylcarnitine. More specifically, it is an deca-2,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2,7)-Decadienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2,7)-Decadienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular (2,7)-Decadienoylcarnitine is elevated in the blood or plasma of individuals with 2,4-dienoyl-coenzyme a reductase deficiency (PMID: 2332510, PMID: 15344554, PMID: 19578400). It is also decreased in the blood or plasma of individuals with familial mediterranean fever (PMID: 29900937) and schizophrenia (PMID: 31161852). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].