Uridine-diphosphate-N-acetylgalactosamine (BioDeep_00001871601)

Main id: BioDeep_00000014571

 

PANOMIX_OTCML-2023


代谢物信息卡片


Uridine-diphosphate-N-acetylgalactosamine

化学式: C17H27N3O17P2 (607.0816)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=O)NC1C(C(C(OC1OP(=O)(O)OP(=O)(O)OCC2C(C(C(O2)N3C=CC(=O)NC3=O)O)O)CO)O)O
InChI: InChI=1S/C17H27N3O17P2/c1-6(22)18-10-13(26)11(24)7(4-21)35-16(10)36-39(31,32)37-38(29,30)33-5-8-12(25)14(27)15(34-8)20-3-2-9(23)19-17(20)28/h2-3,7-8,10-16,21,24-27H,4-5H2,1H3,(H,18,22)(H,29,30)(H,31,32)(H,19,23,28)/t7-,8-,10-,11+,12-,13-,14-,15-,16-/m1/s1

描述信息

同义名列表

1 个代谢物同义名

Uridine-diphosphate-N-acetylgalactosamine



数据库引用编号

5 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Wen Jing, Yalan Qin, Jin Tong. Effects of macromolecular crowding on the folding and aggregation of glycosylated MUC5AC. Biochemical and biophysical research communications. 2020 09; 529(4):984-990. doi: 10.1016/j.bbrc.2020.06.156. [PMID: 32819609]
  • Taiki Kano, Kazunao Kondo, Jiharu Hamako, Fumio Matsushita, Kazuya Sakai, Taei Matsui. Effects of plasma glycosyltransferase on the ABO(H) blood group antigens of human von Willebrand factor. International journal of hematology. 2018 Aug; 108(2):139-144. doi: 10.1007/s12185-018-2452-0. [PMID: 29619625]
  • Chitra Bhatia, Stephanie Oerum, James Bray, Kathryn L Kavanagh, Naeem Shafqat, Wyatt Yue, Udo Oppermann. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships. Chemico-biological interactions. 2015 Jun; 234(?):114-25. doi: 10.1016/j.cbi.2014.12.013. [PMID: 25526675]
  • Michael C E Niemann, Isabel Bartrina, Angel Ashikov, Henriette Weber, Ondřej Novák, Lukáš Spíchal, Miroslav Strnad, Richard Strasser, Hans Bakker, Thomas Schmülling, Tomáš Werner. Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proceedings of the National Academy of Sciences of the United States of America. 2015 Jan; 112(1):291-6. doi: 10.1073/pnas.1419050112. [PMID: 25535363]
  • René Jørgensen, Thomas Pesnot, Ho Jun Lee, Monica M Palcic, Gerd K Wagner. Base-modified donor analogues reveal novel dynamic features of a glycosyltransferase. The Journal of biological chemistry. 2013 Sep; 288(36):26201-26208. doi: 10.1074/jbc.m113.465963. [PMID: 23836908]
  • Jayalakshmi Raman, Yu Guan, Cynthia L Perrine, Thomas A Gerken, Lawrence A Tabak. UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases: completion of the family tree. Glycobiology. 2012 Jun; 22(6):768-77. doi: 10.1093/glycob/cwr183. [PMID: 22186971]
  • A L Milac, N V Buchete, T A Fritz, G Hummer, L A Tabak. Substrate-induced conformational changes and dynamics of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-2. Journal of molecular biology. 2007 Oct; 373(2):439-51. doi: 10.1016/j.jmb.2007.08.028. [PMID: 17850816]
  • Carolina E Caffaro, Carlos B Hirschberg, Patricia M Berninsone. Independent and simultaneous translocation of two substrates by a nucleotide sugar transporter. Proceedings of the National Academy of Sciences of the United States of America. 2006 Oct; 103(44):16176-81. doi: 10.1073/pnas.0608159103. [PMID: 17060606]
  • Yasuo Terauchi, Junji Matsui, Junji Kamon, Toshimasa Yamauchi, Naoto Kubota, Kajuro Komeda, Shinichi Aizawa, Yasuo Akanuma, Motowo Tomita, Takashi Kadowaki. Increased serum leptin protects from adiposity despite the increased glucose uptake in white adipose tissue in mice lacking p85alpha phosphoinositide 3-kinase. Diabetes. 2004 Sep; 53(9):2261-70. doi: 10.2337/diabetes.53.9.2261. [PMID: 15331535]
  • Kelly G Ten Hagen, Timothy A Fritz, Lawrence A Tabak. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 2003 Jan; 13(1):1R-16R. doi: 10.1093/glycob/cwg007. [PMID: 12634319]
  • Marie-Jose J Pouwels, Paul N Span, Cees J Tack, André J Olthaar, C G J Fred Sweep, Baziel G van Engelen, Jan G de Jong, Jos A Lutterman, Ad R Hermus. Muscle uridine diphosphate-hexosamines do not decrease despite correction of hyperglycemia-induced insulin resistance in type 2 diabetes. The Journal of clinical endocrinology and metabolism. 2002 Nov; 87(11):5179-84. doi: 10.1210/jc.2002-020440. [PMID: 12414889]
  • M Yang, M Butler. Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnology progress. 2002 Jan; 18(1):129-38. doi: 10.1021/bp0101334. [PMID: 11822911]
  • P Berninsone, H Y Hwang, I Zemtseva, H R Horvitz, C B Hirschberg. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proceedings of the National Academy of Sciences of the United States of America. 2001 Mar; 98(7):3738-43. doi: 10.1073/pnas.061593098. [PMID: 11259660]
  • G Veerababu, J Tang, R T Hoffman, M C Daniels, L F Hebert, E D Crook, R C Cooksey, D A McClain. Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes. 2000 Dec; 49(12):2070-8. doi: 10.2337/diabetes.49.12.2070. [PMID: 11118009]
  • R Lehmann, M Huber, A Beck, T Schindera, T Rinkler, B Houdali, C Weigert, H U Häring, W Voelter, E D Schleicher. Simultaneous, quantitative analysis of UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, UDP-glucose and UDP-galactose in human peripheral blood cells, muscle biopsies and cultured mesangial cells by capillary zone electrophoresis. Electrophoresis. 2000 Aug; 21(14):3010-5. doi: 10.1002/1522-2683(20000801)21:14<3010::aid-elps3010>3.0.co;2-c. [PMID: 11001317]
  • V L Tlapak-Simmons, B A Baggenstoss, K Kumari, C Heldermon, P H Weigel. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. The Journal of biological chemistry. 1999 Feb; 274(7):4246-53. doi: 10.1074/jbc.274.7.4246. [PMID: 9933624]
  • A Takeya, O Hosomi, T Kogure. Vicia villosa B4 lectin inhibits nucleotide pyrophosphatase activity toward UDP-GalNAc specifically. Biochimica et biophysica acta. 1998 Sep; 1425(1):215-23. doi: 10.1016/s0304-4165(98)00074-9. [PMID: 9813334]
  • H Kitagawa, Y Tanaka, K Tsuchida, F Goto, T Ogawa, K Lidholt, U Lindahl, K Sugahara. N-acetylgalactosamine (GalNAc) transfer to the common carbohydrate-protein linkage region of sulfated glycosaminoglycans. Identification of UDP-GalNAc:chondro-oligosaccharide alpha-N-acetylgalactosaminyltransferase in fetal bovine serum. The Journal of biological chemistry. 1995 Sep; 270(38):22190-5. doi: 10.1074/jbc.270.38.22190. [PMID: 7673197]
  • S C Kivatinitz, V R Grabois, S Quiroga. High-density lipoprotein inhibits UDP-N-acetylgalactosamine:GM3, N-acetylgalactosaminyltransferase and differentiation of cultured cerebral cells: comparison with a formerly described inhibitor of this enzyme. Journal of neurochemistry. 1995 Aug; 65(2):775-81. doi: 10.1046/j.1471-4159.1995.65020775.x. [PMID: 7616235]
  • B C O'Connell, L A Tabak. Separation of glycopeptides from in vitro O-glycosylation reactions using C18 cartridges. Analytical biochemistry. 1993 May; 210(2):423-5. doi: 10.1006/abio.1993.1219. [PMID: 8512081]
  • P Greenwell, A D Yates, W M Watkins. UDP-N-acetyl-D-galactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus. Carbohydrate research. 1986 Jun; 149(1):149-70. doi: 10.1016/s0008-6215(00)90375-6. [PMID: 3089601]
  • D M Kingsley, K F Kozarsky, L Hobbie, M Krieger. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell. 1986 Mar; 44(5):749-59. doi: 10.1016/0092-8674(86)90841-x. [PMID: 3948246]
  • T Sawicka. [Glycoconjugates biosynthesis of plasma membranes of mammalian cells (author's transl)]. Postepy biochemii. 1981; 27(2):157-79. doi: NULL. [PMID: 6460994]
  • P Babczinski. Evidence against the participation of lipid intermediates in the in vitro biosynthesis of serine(threonine)-N-acetyl-D-galactosamine linkages in submaxillary mucin. FEBS letters. 1980 Aug; 117(1):207-11. doi: 10.1016/0014-5793(80)80946-x. [PMID: 6773807]
  • H Schenkel-Brunner. Blood-group-ABH antigens of human erythrocytes. Quantitative studies on the distribution of H antigenic sites among different classes of membrane components. European journal of biochemistry. 1980 Mar; 104(2):529-34. doi: 10.1111/j.1432-1033.1980.tb04455.x. [PMID: 6153982]
  • M S Kang, J P Spencer, A D Elbein. Amphomycin inhibits the incorporation of mannose and GlcNAc into lipid-linked saccharides by aorta extracts. Biochemical and biophysical research communications. 1978 May; 82(2):568-74. doi: 10.1016/0006-291x(78)90912-9. [PMID: 666860]
  • M Schwyzer, R L Hill. Porcine A blood group-specific N-acetylgalactosaminyltransferase. I. Purification from porcine submaxillary glands. The Journal of biological chemistry. 1977 Apr; 252(7):2338-45. doi: NULL. [PMID: 14962]
  • . . . . doi: . [PMID: 17506657]