2-Deoxycastasterone (BioDeep_00000859288)
Main id: BioDeep_00000014717
human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C28H48O4 (448.3552408)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC(C)C(C)C(C(C(C)C1CCC2C1(CCC3C2CC(=O)C4C3(CCC(C4)O)C)C)O)O
InChI: InChI=1S/C28H48O4/c1-15(2)16(3)25(31)26(32)17(4)20-7-8-21-19-14-24(30)23-13-18(29)9-11-28(23,6)22(19)10-12-27(20,21)5/h15-23,25-26,29,31-32H,7-14H2,1-6H3/t16-,17-,18+,19-,20+,21-,22-,23+,25+,26+,27+,28+/m0/s1
描述信息
2-Deoxycastasterone, also known as typhasterol, belongs to the class of organic compounds known as trihydroxy bile acids, alcohols, and derivatives. These are prenol lipids structurally characterized by a bile acid or alcohol which bears three hydroxyl groups. Thus, 2-deoxycastasterone is considered to be a sterol lipid molecule. 2-Deoxycastasterone is found in cereals and cereal products. 2-Deoxycastasterone is a constituent of green tea (Thea sinensis) and wheat grains (Triticum aestivum).
同义名列表
8 个代谢物同义名
(1S,2R,5R,7S,10S,11S,14R,15S)-14-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-one; (3alpha,5alpha,22R,23R,24S)-3,22,23-Trihydroxyergostan-6-one; (3Α,5α,22R,23R,24S)-3,22,23-trihydroxyergostan-6-one; 6-oxo-campestan-3alpha,22R,23R-triol; 2-Deoxycastasterone; Typhasterol; ST 28:1;O4; Typhasterol
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:27173
- KEGG: C15793
- PubChem: 13475120
- HMDB: HMDB0034423
- LipidMAPS: LMST01030130
- MetaCyc: CPD-719
- KNApSAcK: C00000185
- foodb: FDB012821
- chemspider: 10378882
- CAS: 87734-68-7
- PubChem: 47205118
- NIKKAJI: J146.606B
- KNApSAcK: 27173
分类词条
相关代谢途径
Reactome(0)
PlantCyc(3)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
19 个相关的物种来源信息
- 4442 - Camellia sinensis: 10.1271/BBB1961.48.2171
- 4058 - Catharanthus roseus: 10.1271/BBB.58.1186
- 3369 - Cryptomeria japonica:
- 50998 - Distylium racemosum: 10.1271/BBB.58.986
- 49642 - Erythronium japonicum: 10.1271/BBB.59.2156
- 9606 - Homo sapiens: -
- 4690 - Lilium longiflorum: 10.1271/BBB.58.986
- 79005 - Lilium maculatum: 10.1271/BBB.58.2075
- 3197 - Marchantia polymorpha: 10.1093/OXFORDJOURNALS.PCP.A029628
- 3332 - Picea sitchensis: 10.1016/S0031-9422(00)81127-9
- 3350 - Pinus thunbergii: 10.1271/BBB1961.47.2419
- 35938 - Robinia pseudoacacia: 10.1271/BBB.59.309
- 4550 - Secale cereale: 10.1016/0031-9422(94)00797-W
- 346985 - Senna obtusifolia: 10.1271/BBB.58.1343
- 362788 - Senna tora: 10.1271/BBB.58.1343
- 4565 - Triticum aestivum: 10.1271/BBB.58.1183
- 379307 - Typha capensis: 10.1016/S0040-4039(00)94295-3
- 4733 - Typha latifolia: 10.1016/S0040-4039(00)94295-3
- 4577 - Zea mays: 10.1271/BBB1961.50.3133
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Se-Hwan Joo, Tae-Wuk Kim, Seung-Hyun Son, Woo Sung Lee, Takao Yokota, Seong-Ki Kim. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana.
Journal of experimental botany.
2012 Mar; 63(5):1823-33. doi:
10.1093/jxb/err354
. [PMID: 22170941] - Katja Schneider, Christian Breuer, Ayako Kawamura, Yusuke Jikumaru, Atsushi Hanada, Shozo Fujioka, Takanari Ichikawa, Youichi Kondou, Minami Matsui, Yuji Kamiya, Shinjiro Yamaguchi, Keiko Sugimoto. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.
PloS one.
2012; 7(10):e46805. doi:
10.1371/journal.pone.0046805
. [PMID: 23071642] - Sigrid Husar, Franz Berthiller, Shozo Fujioka, Wilfried Rozhon, Mamoona Khan, Florian Kalaivanan, Luisa Elias, Gillian S Higgins, Yi Li, Rainer Schuhmacher, Rudolf Krska, Hideharu Seto, Fabian E Vaistij, Dianna Bowles, Brigitte Poppenberger. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana.
BMC plant biology.
2011 Mar; 11(?):51. doi:
10.1186/1471-2229-11-51
. [PMID: 21429230] - Brigitte Poppenberger, Wilfried Rozhon, Mamoona Khan, Sigrid Husar, Gerhard Adam, Christian Luschnig, Shozo Fujioka, Tobias Sieberer. CESTA, a positive regulator of brassinosteroid biosynthesis.
The EMBO journal.
2011 Mar; 30(6):1149-61. doi:
10.1038/emboj.2011.35
. [PMID: 21336258] - Satish K Guttikonda, Joshi Trupti, Naveen C Bisht, Hui Chen, Yong-Qiang C An, Sona Pandey, Dong Xu, Oliver Yu. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases.
BMC plant biology.
2010 Nov; 10(?):243. doi:
10.1186/1471-2229-10-243
. [PMID: 21062474] - Wilfried Rozhon, Juliane Mayerhofer, Elena Petutschnig, Shozo Fujioka, Claudia Jonak. ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway.
The Plant journal : for cell and molecular biology.
2010 Apr; 62(2):215-23. doi:
10.1111/j.1365-313x.2010.04145.x
. [PMID: 20128883] - Andrzej Bajguz. Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae).
Journal of plant physiology.
2009 Nov; 166(17):1946-9. doi:
10.1016/j.jplph.2009.05.003
. [PMID: 19535168] - Tong Yuan, Shozo Fujioka, Suguru Takatsuto, Shogo Matsumoto, Xiaoping Gou, Kai He, Scott D Russell, Jia Li. BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2007 Jul; 51(2):220-33. doi:
10.1111/j.1365-313x.2007.03129.x
. [PMID: 17521414] - Sumiyo Tanabe, Motoyuki Ashikari, Shozo Fujioka, Suguru Takatsuto, Shigeo Yoshida, Masahiro Yano, Atsushi Yoshimura, Hidemi Kitano, Makoto Matsuoka, Yukiko Fujisawa, Hisaharu Kato, Yukimoto Iwasaki. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length.
The Plant cell.
2005 Mar; 17(3):776-90. doi:
10.1105/tpc.104.024950
. [PMID: 15705958] - Gyung-Tae Kim, Shozo Fujioka, Toshiaki Kozuka, Frans E Tax, Suguru Takatsuto, Shigeo Yoshida, Hirokazu Tsukaya. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2005 Mar; 41(5):710-21. doi:
10.1111/j.1365-313x.2004.02330.x
. [PMID: 15703058] - R Yamamoto, S Fujioka, T Demura, S Takatsuto, S Yoshida, H Fukuda. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements.
Plant physiology.
2001 Feb; 125(2):556-63. doi:
10.1104/pp.125.2.556
. [PMID: 11161013] - . .
.
. doi:
. [PMID: 9927639]
- . .
.
. doi:
. [PMID: 11402205]
- . .
.
. doi:
. [PMID: 18685225]
- . .
.
. doi:
. [PMID: 14502988]