CoA 14:0 (BioDeep_00000630381)

Main id: BioDeep_00000004951

 


代谢物信息卡片


S-tetradecanoyl-coenzyme A;n-C14:0-CoA;n-C14:0-coenzyme A

化学式: C35H62N7O17P3S (977.3135592)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
InChI: InChI=1S/C35H62N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-26(44)63-19-18-37-25(43)16-17-38-33(47)30(46)35(2,3)21-56-62(53,54)59-61(51,52)55-20-24-29(58-60(48,49)50)28(45)34(57-24)42-23-41-27-31(36)39-22-40-32(27)42/h22-24,28-30,34,45-46H,4-21H2,1-3H3,(H,37,43)(H,38,47)(H,51,52)(H,53,54)(H2,36,39,40)(H2,48,49,50)/t24-,28-,29-,30+,34-/m1/s1



数据库引用编号

11 个数据库交叉引用编号

分类词条

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Eric Soupene, Frans A Kuypers. Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins. Biomolecules. 2022 11; 12(12):. doi: 10.3390/biom12121726. [PMID: 36551154]
  • Melissa K Ritchie, Lynnette C Johnson, Jill E Clodfelter, Charles W Pemble, Brian E Fulp, Cristina M Furdui, Steven J Kridel, W Todd Lowther. Crystal Structure and Substrate Specificity of Human Thioesterase 2: INSIGHTS INTO THE MOLECULAR BASIS FOR THE MODULATION OF FATTY ACID SYNTHASE. The Journal of biological chemistry. 2016 Feb; 291(7):3520-30. doi: 10.1074/jbc.m115.702597. [PMID: 26663084]
  • Eric Soupene, Joseph Kao, Daniel H Cheng, Derek Wang, Alexander L Greninger, Giselle M Knudsen, Joseph L DeRisi, Frans A Kuypers. Association of NMT2 with the acyl-CoA carrier ACBD6 protects the N-myristoyltransferase reaction from palmitoyl-CoA. Journal of lipid research. 2016 Feb; 57(2):288-98. doi: 10.1194/jlr.m065003. [PMID: 26621918]
  • David R Colquhoun, Alexey E Lyashkov, Ceereena Ubaida Mohien, Veronica N Aquino, Brandon T Bullock, Rhoel R Dinglasan, Brian J Agnew, David R M Graham. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection. Proteomics. 2015 Jun; 15(12):2066-77. doi: 10.1002/pmic.201500063. [PMID: 25914232]
  • Sarah Brice Russo, Rotem Tidhar, Anthony H Futerman, L Ashley Cowart. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. The Journal of biological chemistry. 2013 May; 288(19):13397-409. doi: 10.1074/jbc.m112.428185. [PMID: 23530041]
  • Luciana Renna, Giovanni Stefano, Wojciech Majeran, Chiara Micalella, Thierry Meinnel, Carmela Giglione, Federica Brandizzi. Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis. The Plant cell. 2013 May; 25(5):1756-73. doi: 10.1105/tpc.113.111393. [PMID: 23673980]
  • Francesca Rampoldi, Roger Sandhoff, Robert W Owen, Hermann-Josef Gröne, Stefan Porubsky. A new, robust, and nonradioactive approach for exploring N-myristoylation. Journal of lipid research. 2012 Nov; 53(11):2459-68. doi: 10.1194/jlr.d026997. [PMID: 22829651]
  • Vincent Rioux, Frédérique Pédrono, Philippe Legrand. Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochimica et biophysica acta. 2011 Jan; 1811(1):1-8. doi: 10.1016/j.bbalip.2010.09.005. [PMID: 20920594]
  • Jessica V Hankins, M Stephen Trent. Secondary acylation of Vibrio cholerae lipopolysaccharide requires phosphorylation of Kdo. The Journal of biological chemistry. 2009 Sep; 284(38):25804-12. doi: 10.1074/jbc.m109.022772. [PMID: 19617350]
  • Jie Wei, Hye Won Kang, David E Cohen. Thioesterase superfamily member 2 (Them2)/acyl-CoA thioesterase 13 (Acot13): a homotetrameric hotdog fold thioesterase with selectivity for long-chain fatty acyl-CoAs. The Biochemical journal. 2009 Jun; 421(2):311-22. doi: 10.1042/bj20090039. [PMID: 19405909]
  • Ana Arabolaza, Eduardo Rodriguez, Silvia Altabe, Hector Alvarez, Hugo Gramajo. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Applied and environmental microbiology. 2008 May; 74(9):2573-82. doi: 10.1128/aem.02638-07. [PMID: 18310412]
  • Thierry Meinnel, Carmela Giglione. Protein lipidation meets proteomics. Frontiers in bioscience : a journal and virtual library. 2008 May; 13(?):6326-40. doi: 10.2741/3157. [PMID: 18508663]
  • Vincent Rioux, Erwan Beauchamp, Frédérique Pedrono, Stéphanie Daval, Daniel Molle, Daniel Catheline, Philippe Legrand. Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Molecular and cellular biochemistry. 2006 Jun; 286(1-2):161-70. doi: 10.1007/s11010-005-9108-0. [PMID: 16538398]
  • Aziz C Awad, Han-Seung Shin, Dale R Romsos, J Ian Gray. Desaturation of myristoyl-CoA to myristoleoyl-CoA by hen liver microsomal delta(9)-desaturase. Journal of agricultural and food chemistry. 2004 Jun; 52(13):4234-9. doi: 10.1021/jf034720b. [PMID: 15212474]
  • Aziz C Awad, Han-Seung Shin, Dale R Romsos, J Ian Gray. Direct desaturation of free myristic acid by hen liver microsomal Delta9-desaturase without prior activation to myristoyl-CoA derivative. Journal of agricultural and food chemistry. 2004 May; 52(10):3194-201. doi: 10.1021/jf0348020. [PMID: 15137875]
  • Bertrand Boisson, Thierry Meinnel. A continuous assay of myristoyl-CoA:protein N-myristoyltransferase for proteomic analysis. Analytical biochemistry. 2003 Nov; 322(1):116-23. doi: 10.1016/j.ab.2003.07.007. [PMID: 14705787]
  • Yi Shan Luo, Jean Marc Nicaud, Paul P Van Veldhoven, Thierry Chardot. The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p. Archives of biochemistry and biophysics. 2002 Nov; 407(1):32-8. doi: 10.1016/s0003-9861(02)00466-6. [PMID: 12392712]
  • K Murakami, T Ide, T Nakazawa, T Okazaki, T Mochizuki, T Kadowaki. Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to alpha and gamma isoforms of peroxisome-proliferator-activated receptors by competing with agonists. The Biochemical journal. 2001 Jan; 353(Pt 2):231-8. doi: 10.1042/0264-6021:3530231. [PMID: 11139385]
  • K G Milne, M A Ferguson. Cloning, expression, and characterization of the acyl-CoA-binding protein in African trypanosomes. The Journal of biological chemistry. 2000 Apr; 275(17):12503-8. doi: 10.1074/jbc.275.17.12503. [PMID: 10777537]
  • R V Raju, R S Datla, R K Sharma. Genomic organization of human myristoyl-CoA: protein N-myristoyltransferase-1. Biochemical and biophysical research communications. 1999 Apr; 257(2):284-8. doi: 10.1006/bbrc.1999.0439. [PMID: 10198204]
  • K G Milne, M A Ferguson, P T Englund. A novel glycosylphosphatidylinositol in African trypanosomes. A possible catabolic intermediate. The Journal of biological chemistry. 1999 Jan; 274(3):1465-71. doi: 10.1074/jbc.274.3.1465. [PMID: 9880521]
  • L Meng, N Sin, C M Crews. The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase. Biochemistry. 1998 Jul; 37(29):10488-92. doi: 10.1021/bi9804479. [PMID: 9671519]
  • L Missiaen, H De Smedt, J B Parys, H Sipma, K Maes, S Vanlingen, I Sienaert, W Van Driessche, R Casteels. Synergism between hypotonically induced calcium release and fatty acyl-CoA esters induced calcium release from intracellular stores. Cell calcium. 1997 Sep; 22(3):151-6. doi: 10.1016/s0143-4160(97)90008-7. [PMID: 9330785]
  • N M Broadway, E D Saggerson. Effect of membrane environment on the activity and inhibitability by malonyl-CoA of the carnitine acyltransferase of hepatic microsomal membranes. The Biochemical journal. 1997 Mar; 322 ( Pt 2)(?):435-40. doi: 10.1042/bj3220435. [PMID: 9065760]
  • Y Morikawa, S Hinata, H Tomoda, T Goto, M Nakai, C Aizawa, H Tanaka, S Omura. Complete inhibition of human immunodeficiency virus Gag myristoylation is necessary for inhibition of particle budding. The Journal of biological chemistry. 1996 Feb; 271(5):2868-73. doi: 10.1074/jbc.271.5.2868. [PMID: 8576268]
  • C S Tamvakopoulos, S Willi, V E Anderson, D E Hale. Long-chain acyl-CoA profiles in cultured fibroblasts from patients with defects in fatty acid oxidation. Biochemical and molecular medicine. 1995 Jun; 55(1):15-21. doi: 10.1006/bmme.1995.1026. [PMID: 7551821]
  • D R Johnson, L J Knoll, D E Levin, J I Gordon. Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. The Journal of cell biology. 1994 Nov; 127(3):751-62. doi: 10.1083/jcb.127.3.751. [PMID: 7962057]
  • R J Duronio, L J Knoll, J I Gordon. Isolation of a Saccharomyces cerevisiae long chain fatty acyl:CoA synthetase gene (FAA1) and assessment of its role in protein N-myristoylation. The Journal of cell biology. 1992 May; 117(3):515-29. doi: 10.1083/jcb.117.3.515. [PMID: 1572893]
  • M Adam, A Rodriguez, C Turbide, J Larrick, E Meighen, R M Johnstone. In vitro acylation of the transferrin receptor. The Journal of biological chemistry. 1984 Dec; 259(24):15460-3. doi: . [PMID: 6096372]
  • M F Schmidt. The transfer of myristic and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus. The EMBO journal. 1984 Oct; 3(10):2295-300. doi: 10.1002/j.1460-2075.1984.tb02129.x. [PMID: 6094180]
  • . . . . doi: . [PMID: 21926997]