D-Xylulose (BioDeep_00000405459)
Main id: BioDeep_00000014432
PANOMIX_OTCML-2023 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C5H10O5 (150.052821)
中文名称: D-木酮糖
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C(C(C(=O)CO)O)O)O
InChI: InChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h3,5-8,10H,1-2H2/t3-,5+/m1/s1
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:17140
- PubChem: 5289590
- ChEMBL: CHEMBL195094
- MeSH: Xylulose
- CAS: 14233-61-5
- CAS: 5962-29-8
- CAS: 551-84-8
- CAS: 20750-28-1
- MoNA: HMDB0001644_ms_ms_1668
- MoNA: HMDB0001644_ms_ms_1666
- MoNA: HMDB0001644_ms_ms_1667
- MetaboLights: MTBLC17140
- KEGG: C00310
- PubChem: 3604
- KNApSAcK: 17140
- LOTUS: LTS0100760
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
323 个相关的代谢反应过程信息。
Reactome(45)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Formation of xylulose-5-phosphate:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Formation of xylulose-5-phosphate:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
BioCyc(40)
- D-arabitol degradation:
D-arabinitol + NAD+ ⟶ D-xylulose + H+ + NADH
- superpathway of pentose and pentitol degradation:
H2O + L-arabinono-1,4-lactone ⟶ H+ + L-arabinonate
- D-arabitol degradation:
ATP + D-xylulose ⟶ ADP + D-xylulose-5-phosphate + H+
- D-arabitol degradation:
D-arabitol + NAD+ ⟶ D-xylulose + H+ + NADH
- xylitol degradation:
NAD+ + xylitol ⟶ D-xylulose + H+ + NADH
- xylitol degradation:
NAD+ + xylitol ⟶ D-xylulose + H+ + NADH
- xylitol degradation:
ATP + D-xylulose ⟶ ADP + D-xylulose-5-phosphate + H+
- xylitol degradation:
NAD+ + xylitol ⟶ D-xylulose + H+ + NADH
- xylose degradation I:
ATP + D-xylulose ⟶ ADP + D-xylulose-5-phosphate + H+
- xylose degradation I:
ATP + D-xylulose ⟶ ADP + D-xylulose-5-phosphate + H+
- D-xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- superpathway of glucose and xylose degradation:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- D-xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- superpathway of glucose and xylose degradation:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- D-xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- glucose and xylose degradation:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- glucose and xylose degradation:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- D-xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- superpathway of glucose and xylose degradation:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- superpathway of glucose and xylose degradation:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- D-xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- superpathway of glucose and xylose degradation:
β-D-glucose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- superpathway of glucose and xylose degradation:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- xylose degradation I:
D-xylopyranose ⟶ D-xylulose
- xylose degradation I:
D-xylose ⟶ D-xylulose
- xylitol degradation:
ATP + D-xylulose ⟶ ADP + D-xylulose-5-phosphate + H+
- xylitol degradation:
ATP + D-xylulose ⟶ ADP + D-xylulose-5-phosphate + H+
WikiPathways(0)
Plant Reactome(234)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
INOH(0)
COVID-19 Disease Map(0)
PathBank(3)
- Xylitol Degradation:
D-Xylose + NADP ⟶ D-Xylitol + Hydrogen Ion + NADPH
- Xylose Degradation I:
Adenosine triphosphate + D-Xylulose ⟶ Adenosine diphosphate + Hydrogen Ion + Xylulose 5-phosphate
- Xylose Degradation I:
Adenosine triphosphate + D-Xylulose ⟶ Adenosine diphosphate + Hydrogen Ion + Xylulose 5-phosphate
PharmGKB(0)
39 个相关的物种来源信息
- 6656 - Arthropoda: LTS0100760
- 4890 - Ascomycota: LTS0100760
- 91061 - Bacilli: LTS0100760
- 2 - Bacteria: LTS0100760
- 6658 - Branchiopoda: LTS0100760
- 5475 - Candida: LTS0100760
- 5476 - Candida albicans: LTS0100760
- 7711 - Chordata: LTS0100760
- 6668 - Daphnia: LTS0100760
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0100760
- 77658 - Daphniidae: LTS0100760
- 766764 - Debaryomycetaceae: LTS0100760
- 543 - Enterobacteriaceae: LTS0100760
- 561 - Escherichia: LTS0100760
- 562 - Escherichia coli: LTS0100760
- 33682 - Euglenozoa: LTS0100760
- 2759 - Eukaryota: LTS0100760
- 4751 - Fungi: LTS0100760
- 1236 - Gammaproteobacteria: LTS0100760
- 9604 - Hominidae: LTS0100760
- 9605 - Homo: LTS0100760
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0100760
- 5653 - Kinetoplastea: LTS0100760
- 40674 - Mammalia: LTS0100760
- 33208 - Metazoa: LTS0100760
- 10066 - Muridae: LTS0100760
- 10088 - Mus: LTS0100760
- 10090 - Mus musculus: LTS0100760
- 10090 - Mus musculus: NA
- 4891 - Saccharomycetes: LTS0100760
- 90964 - Staphylococcaceae: LTS0100760
- 1279 - Staphylococcus: LTS0100760
- 1280 - Staphylococcus aureus: LTS0100760
- 5690 - Trypanosoma: LTS0100760
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: LTS0100760
- 5654 - Trypanosomatidae: LTS0100760
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sirsha Mitra, Jonathan Gershenzon. Effects of herbivory on carotenoid biosynthesis and breakdown.
Methods in enzymology.
2022; 674(?):497-517. doi:
10.1016/bs.mie.2022.06.001
. [PMID: 36008018] - Akane Kanasaki, Misato Niibo, Tetsuo Iida. Effect of D-allulose feeding on the hepatic metabolomics profile in male Wistar rats.
Food & function.
2021 May; 12(9):3931-3938. doi:
10.1039/d0fo03024d
. [PMID: 33977954] - Junhe Yu, Heping Cui, Wei Tang, Khizar Hayat, Shahzad Hussain, Muhammad Usman Tahir, Yahui Gao, Xiaoming Zhang, Chi-Tang Ho. Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of N-(1-Deoxy-d-xylulos-1-yl)alanine.
Journal of agricultural and food chemistry.
2020 Feb; 68(6):1714-1724. doi:
10.1021/acs.jafc.0c00200
. [PMID: 31957424] - Adam Jozwiak, Agata Lipko, Magdalena Kania, Witold Danikiewicz, Liliana Surmacz, Agnieszka Witek, Jacek Wojcik, Konrad Zdanowski, Cezary Pączkowski, Tadeusz Chojnacki, Jaroslaw Poznanski, Ewa Swiezewska. Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
Plant physiology.
2017 Jun; 174(2):857-874. doi:
10.1104/pp.17.00036
. [PMID: 28385729] - H-H Chang, H-N Chao, C S Walker, S-Y Choong, A Phillips, K M Loomes. Renal depletion of myo-inositol is associated with its increased degradation in animal models of metabolic disease.
American journal of physiology. Renal physiology.
2015 Nov; 309(9):F755-63. doi:
10.1152/ajprenal.00164.2015
. [PMID: 26311112] - Alok Patel, Vikas Pruthi, Rajesh P Singh, Parul A Pruthi. Synergistic effect of fermentable and non-fermentable carbon sources enhances TAG accumulation in oleaginous yeast Rhodosporidium kratochvilovae HIMPA1.
Bioresource technology.
2015; 188(?):136-44. doi:
10.1016/j.biortech.2015.02.062
. [PMID: 25769691] - Le Tho Son, Kyung-Min Ko, Jeong Hoon Cho, Gunasekaran Singaravelu, Indrani Chatterjee, Tae-Woo Choi, Hyun-Ok Song, Jae-Ran Yu, Byung-Jae Park, Sun-Kyung Lee, Joohong Ahnn. DHS-21, a dicarbonyl/L-xylulose reductase (DCXR) ortholog, regulates longevity and reproduction in Caenorhabditis elegans.
FEBS letters.
2011 May; 585(9):1310-6. doi:
10.1016/j.febslet.2011.03.062
. [PMID: 21477590] - César Fonseca, Kim Olofsson, Carla Ferreira, David Runquist, Luís L Fonseca, Bärbel Hahn-Hägerdal, Gunnar Lidén. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw.
Enzyme and microbial technology.
2011 May; 48(6-7):518-25. doi:
10.1016/j.enzmictec.2011.02.010
. [PMID: 22113025] - Denis Tritsch, Andréa Hemmerlin, Thomas J Bach, Michel Rohmer. Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures.
FEBS letters.
2010 Jan; 584(1):129-34. doi:
10.1016/j.febslet.2009.11.010
. [PMID: 19903472] - Tomoki Sando, Shinya Takeno, Norie Watanabe, Hiroshi Okumoto, Tomohisa Kuzuyama, Atsushi Yamashita, Masahira Hattori, Naotake Ogasawara, Eiichiro Fukusaki, Akio Kobayashi. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.
Bioscience, biotechnology, and biochemistry.
2008 Nov; 72(11):2903-17. doi:
10.1271/bbb.80387
. [PMID: 18997428] - Kazunori Okada, Hiroyuki Kasahara, Shinjiro Yamaguchi, Hiroshi Kawaide, Yuji Kamiya, Hideaki Nojiri, Hisakazu Yamane. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis.
Plant & cell physiology.
2008 Apr; 49(4):604-16. doi:
10.1093/pcp/pcn032
. [PMID: 18303110] - Lukasz Kutrzeba, Franck E Dayan, J'Lynn Howell, Ju Feng, José-Luis Giner, Jordan K Zjawiony. Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway.
Phytochemistry.
2007 Jul; 68(14):1872-81. doi:
10.1016/j.phytochem.2007.04.034
. [PMID: 17574635] - Andréa Hemmerlin, Denis Tritsch, Michael Hartmann, Karine Pacaud, Jean-François Hoeffler, Alain van Dorsselaer, Michel Rohmer, Thomas J Bach. A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway.
Plant physiology.
2006 Oct; 142(2):441-57. doi:
10.1104/pp.106.086652
. [PMID: 16920870] - Daniela Hampel, Armin Mosandl, Matthias Wüst. Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: 2H labeling studies.
Journal of agricultural and food chemistry.
2006 Feb; 54(4):1473-8. doi:
10.1021/jf0523972
. [PMID: 16478276] - Christie A M Peebles, Seung-Beom Hong, Susan I Gibson, Jacqueline V Shanks, Ka-Yiu San. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase.
Biotechnology and bioengineering.
2006 Feb; 93(3):534-40. doi:
10.1002/bit.20739
. [PMID: 16240438] - Tobias Link, Gertrud Lohaus, Ingrid Heiser, Kurt Mendgen, Matthias Hahn, Ralf T Voegele. Characterization of a novel NADP(+)-dependent D-arabitol dehydrogenase from the plant pathogen Uromyces fabae.
The Biochemical journal.
2005 Jul; 389(Pt 2):289-95. doi:
10.1042/bj20050301
. [PMID: 15796718] - Ei'ichiro Fukusaki, Shinya Takeno, Takeshi Bamba, Hiroshi Okumoto, Hiroko Katto, Shin'ichiro Kajiyama, Akio Kobayashi. Biosynthetic pathway for the C45 polyprenol, solanesol, in tobacco.
Bioscience, biotechnology, and biochemistry.
2004 Sep; 68(9):1988-90. doi:
10.1271/bbb.68.1988
. [PMID: 15388978] - Ines Neundorf, Christian Köhler, Lothar Hennig, Matthias Findeisen, Duilio Arigoni, Peter Welzel. Evidence for the combined participation of a C10 and a C15 precursor in the biosynthesis of moenocinol, the lipid part of the moenomycin antibiotics.
Chembiochem : a European journal of chemical biology.
2003 Nov; 4(11):1201-5. doi:
10.1002/cbic.200300622
. [PMID: 14613112] - F Grant Pearce, T John Andrews. The relationship between side reactions and slow inhibition of ribulose-bisphosphate carboxylase revealed by a loop 6 mutant of the tobacco enzyme.
The Journal of biological chemistry.
2003 Aug; 278(35):32526-36. doi:
10.1074/jbc.m305493200
. [PMID: 12783874] - Wanchai De-Eknamkul, Buppachart Potduang. Biosynthesis of beta-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units.
Phytochemistry.
2003 Feb; 62(3):389-98. doi:
10.1016/s0031-9422(02)00555-1
. [PMID: 12620352] - Hiroyuki Kasahara, Atsushi Hanada, Tomohisa Kuzuyama, Motoki Takagi, Yuji Kamiya, Shinjiro Yamaguchi. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis.
The Journal of biological chemistry.
2002 Nov; 277(47):45188-94. doi:
10.1074/jbc.m208659200
. [PMID: 12228237] - Fang Luan, Matthias Wüst. Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp.
Phytochemistry.
2002 Jul; 60(5):451-9. doi:
10.1016/s0031-9422(02)00147-4
. [PMID: 12052510] - Michael Eicks, Verónica Maurino, Silke Knappe, Ulf-Ingo Flügge, Karsten Fischer. The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants.
Plant physiology.
2002 Feb; 128(2):512-22. doi:
10.1104/pp.010576
. [PMID: 11842155] - J Schwender, C Gemünden, H K Lichtenthaler. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids.
Planta.
2001 Feb; 212(3):416-23. doi:
10.1007/s004250000409
. [PMID: 11289606] - W Eisenreich, F Rohdich, A Bacher. Deoxyxylulose phosphate pathway to terpenoids.
Trends in plant science.
2001 Feb; 6(2):78-84. doi:
10.1016/s1360-1385(00)01812-4
. [PMID: 11173292] - K P Adam, R Thiel, J Zapp. Incorporation of 1-[1-(13)C]Deoxy-D-xylulose in chamomile sesquiterpenes.
Archives of biochemistry and biophysics.
1999 Sep; 369(1):127-32. doi:
10.1006/abbi.1999.1346
. [PMID: 10462448] - M A Fellermeier, U H Maier, S Sagner, A Bacher, M H Zenk. (-)-2C-methyl-D-erythrono-1,4-lactone is formed after application of the terpenoid precursor 1-deoxy-D-xylulose.
FEBS letters.
1998 Oct; 437(3):278-80. doi:
10.1016/s0014-5793(98)01250-2
. [PMID: 9824307] - S Suzuki. [Essential pentosuria].
Ryoikibetsu shokogun shirizu.
1998; ?(18 Pt 1):104-6. doi:
NULL
. [PMID: 9590001] - D Arigoni, S Sagner, C Latzel, W Eisenreich, A Bacher, M H Zenk. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement.
Proceedings of the National Academy of Sciences of the United States of America.
1997 Sep; 94(20):10600-5. doi:
10.1073/pnas.94.20.10600
. [PMID: 9380681] - S Muniruzzaman, Y T Pan, Y Zeng, B Atkins, K Izumori, A D Elbein. Inhibition of glycoprotein processing by L-fructose and L-xylulose.
Glycobiology.
1996 Dec; 6(8):795-803. doi:
10.1093/glycob/6.8.795
. [PMID: 9023540] - E Domínguez, G Marko-Varga, B Hahn-Hägerdal, L Gorton. Optimization of enzyme ratios in a coimmobilized enzyme reactor for the analysis of D-xylose and D-xylulose in a flow system.
Enzyme and microbial technology.
1994 Mar; 16(3):216-22. doi:
10.1016/0141-0229(94)90045-0
. [PMID: 7764599] - T Senac, B Hahn-Hägerdal. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts.
Applied and environmental microbiology.
1991 Jun; 57(6):1701-6. doi:
10.1128/aem.57.6.1701-1706.1991
. [PMID: 1831338] - M Sochor, S Kunjara, A L Greenbaum, P McLean. Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors.
Journal of developmental physiology.
1989 Sep; 12(3):135-43. doi:
. [PMID: 2483165]
- M Sochor, S Kunjara, P McLean. The effect of aldose reductase inhibitor Statil (ICI 128436) on the glucose over-utilization in kidney of diabetic rats.
Biochemical pharmacology.
1988 Sep; 37(17):3349-56. doi:
10.1016/0006-2952(88)90649-1
. [PMID: 2969732] - K Soyama, N Furukawa. A Japanese case of pentosuria.
Journal of inherited metabolic disease.
1985; 8(1):37. doi:
10.1007/bf01805483
. [PMID: 3157832] - T J Merimee, R I Misbin, L Gold. Elevated L-xylulose concentrations in serum: a difference between type I and type II diabetes.
Metabolism: clinical and experimental.
1984 Jan; 33(1):82-4. doi:
10.1016/0026-0495(84)90166-5
. [PMID: 6228703] - M Sochor, N Z Baquer, P McLean. Regulation of pathways of glucose metabolism in kidney. The effect of experimental diabetes on the activity of the pentose phosphate pathway and the glucuronate-xylulose pathway.
Archives of biochemistry and biophysics.
1979 Dec; 198(2):632-46. doi:
10.1016/0003-9861(79)90541-1
. [PMID: 160215] - H Oka. [Diagnostic tests for pentose metabolism].
Nihon rinsho. Japanese journal of clinical medicine.
1979 Jun; Suppl(?):1685-6. doi:
NULL
. [PMID: 490969] - M Sochor, N Z Baquer, P McLean. Glucose overutilization in diabetes: evidence from studies on the changes in hexokinase, the pentose phosphate pathway and glucuronate-xylulose pathway in rat kidney cortex in diabetes.
Biochemical and biophysical research communications.
1979 Jan; 86(1):32-9. doi:
10.1016/0006-291x(79)90378-4
. [PMID: 435303] - G E Demetrakopoulos, H Amos. Xylose and Xylitol. Metabolism, physiology and nutritional value.
World review of nutrition and dietetics.
1978; 32(?):96-122. doi:
NULL
. [PMID: 366921] - O S Reddi, S V Reddy, K R Reddy. Familial incidence of L-xylulosuria.
Human genetics.
1977 Nov; 39(1):143-5. doi:
10.1007/bf00273166
. [PMID: 924442] - H Oka, S Suzuki, H Suzuki, T Oda. Increased urinary excretion of L-xylulose in patients with liver cirrhosis.
Clinica chimica acta; international journal of clinical chemistry.
1976 Mar; 67(2):131-6. doi:
10.1016/0009-8981(76)90251-5
. [PMID: 1248150] - O BOHJALIAN. ESSENTIAL PENTOSURIA.
Virginia medical monthly.
1965 Aug; 92(?):385. doi:
NULL
. [PMID: 14343031] - W T WRIGHT. Incidence of pentosuria.
The New England journal of medicine.
1961 Dec; 265(?):1154. doi:
10.1056/nejm196112072652308
. [PMID: 14008490] - H HIRSCH-MARIE. [On the malabsorption test with D-xylose or induced xylosuria].
Archives des maladies de l'appareil digestif et des maladies de la nutrition.
1961 Nov; 50(?):1187-9. doi:
NULL
. [PMID: 13907721] - Y KUMAHARA, D S FEINGOLD, I M FREEDBERG, H H HIATT. Studies of pentose metabolism in normal subjects and in patients with pentosuria and pentosuria trait.
The Journal of clinical endocrinology and metabolism.
1961 Aug; 21(?):887-94. doi:
10.1210/jcem-21-8-887
. [PMID: 13755082] - H H HIATT. Carbohydrate metabolism in pentosuria.
Annals of internal medicine.
1960 Aug; 53(?):372-9. doi:
10.7326/0003-4819-53-2-372
. [PMID: 14401665] - P D ROBERTS. The inheritance of essential pentosuria.
British medical journal.
1960 May; 1(5184):1478-9. doi:
10.1136/bmj.1.5184.1478
. [PMID: 14437831] - F L ABEL, J I ROUTH, J A SHEPHERD, R A UTTERBACK. Observations concerning pentosuria and labile phosphate excretion in muscular dystrophy.
Clinical chemistry.
1960 Apr; 6(?):98-114. doi:
10.1093/clinchem/6.2.98
. [PMID: 13791433] - R C BOZIAN, O TOUSTER. Essential pentosuria: renal or enzymic disorder.
Nature.
1959 Aug; 184 (Suppl7)(?):463-4. doi:
10.1038/184463a0
. [PMID: 13803619] - J J BURNS, J KANFER, G ASHWELL. Formation of L-xylulose from L-gulonic acid in rat kidney.
Biochimica et biophysica acta.
1959 Aug; 34(?):464-9. doi:
10.1016/0006-3002(59)90299-9
. [PMID: 13806255] - S HOLLMANN. [On the biochemistry of essential pentosuria, congenital galactosemia and phenylketonuria].
Klinische Wochenschrift.
1959 Jul; 37(?):737-42. doi:
10.1007/bf01478664
. [PMID: 14402711] - H BARTELHEIMER, P FREYSCHMIDT. [Essential pentosuria, liver cirrhosis with abnormally increased spider formation, abuse of amidopyrine].
Arztliche Wochenschrift.
1959 Apr; 14(13-14):262-6. doi:
NULL
. [PMID: 13636940] - G ASHWELL, J KANFER, J J BURNS. Studies of the mechanism of L-xylulose formation by kidney enzymes.
The Journal of biological chemistry.
1959 Mar; 234(3):472-5. doi:
NULL
. [PMID: 13641243] - W E KNOX. Sir Archibald Garrod's Inborn Errors of Metabolism. IV. Pentosuria.
American journal of human genetics.
1958 Dec; 10(4):385-97. doi:
NULL
. [PMID: 13606116] - G T PERKOFF, F H TYLER. Studies in disorders of muscle. XI. The problem of pentosuria in progressive muscular dystrophy.
Metabolism: clinical and experimental.
1956 Sep; 5(5):563-72. doi:
NULL
. [PMID: 13358571] - D B TOWER, E L PETERS, M A POGORELSKIN. Nature and significance of pentosuria in neuromuscular disease.
Neurology.
1956 Feb; 6(2):125-42. doi:
10.1212/wnl.6.2.125
. [PMID: 13288766] - D B TOWER, E L PETERS, M A POGORELSKIN. Nature and significance of pentosuria in neuromuscular disease.
Neurology.
1956 Jan; 6(1):37-49. doi:
10.1212/wnl.6.1.37
. [PMID: 13280026] - O TOUSTER, R M HUTCHESON, L RICE. The influence of D-glucuronolactone on the excretion of L-xylulose by humans and guinea pigs.
The Journal of biological chemistry.
1955 Aug; 215(2):677-84. doi:
10.1016/s0021-9258(18)65991-5
. [PMID: 13242566] - S FUTTERMAN, J H ROE. The identification of ribulose and L-xylulose in human and rat urine.
The Journal of biological chemistry.
1955 Jul; 215(1):257-62. doi:
10.1016/s0021-9258(18)66033-8
. [PMID: 14392159] - F V FLYNN. Essential pentosuria.
British medical journal.
1955 Feb; 1(4910):391-5. doi:
10.1136/bmj.1.4910.391
. [PMID: 13230505] - A L DREW. Pentosuria in neuromuscular disorders.
American journal of physical medicine.
1955 Feb; 34(1):309-11; discussion 311. doi:
NULL
. [PMID: 14361708] - H D BARNES, B M BLOOMBERG. Paper chromatography of the urinary sugar in essential pentosuria.
The South African journal of medical sciences.
1953 Dec; 18(3-4):93-8. doi:
NULL
. [PMID: 13135664] - A L DREW, B T SELVING. Observations on pentosuria in neuromuscular disorders.
Neurology.
1953 Aug; 3(8):563-8. doi:
10.1212/wnl.3.8.563
. [PMID: 13087575] - G MALYOTH, K SCHEPPE, H W STEIN. [Fructosuria, pentosuria, mannosuria; a rare familial disorder of carbohydrate metabolism].
Klinische Wochenschrift.
1952 Nov; 30(43-4):1018-20. doi:
10.1007/bf01533451
. [PMID: 13023951] - H H MACUMBER. Chronic essential pentosuria; a report of three cases.
The Journal of the Oklahoma State Medical Association.
1949 Jul; 42(7):281. doi:
NULL
. [PMID: 18132568] - W R CAVEN. A case of pentosuria.
Canadian Medical Association journal.
1947 Apr; 56(4):429-31. doi:
NULL
. [PMID: 20286955] - B M BLOOMBERG, D ALLDIS. Chronic essential pentosuria, with a report of a case.
South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.
1946 May; 20(?):271-4. doi:
NULL
. [PMID: 20988974] - . .
.
. doi:
. [PMID: 22042873]
- . .
.
. doi:
. [PMID: 9305746]