9JHS2AVR43 (BioDeep_00000396121)

 

Secondary id: BioDeep_00000016722

PANOMIX_OTCML-2023


代谢物信息卡片


2H-1-BENZOPYRAN-7-OL, 3,4-DIHYDRO-3-(2-HYDROXY-4-METHOXYPHENYL)-, (3R)-

化学式: C16H16O4 (272.1048536)
中文名称: 维斯体素
谱图信息: 最多检出来源 Viridiplantae(plant) 1.19%

分子结构信息

SMILES: COC1=CC(=C(C=C1)C2CC3=C(C=C(C=C3)O)OC2)O
InChI: InChI=1S/C16H16O4/c1-19-13-4-5-14(15(18)8-13)11-6-10-2-3-12(17)7-16(10)20-9-11/h2-5,7-8,11,17-18H,6,9H2,1H3/t11-/m0/s1

描述信息

(-)-vestitol is a methoxyisoflavan that is (R)-isoflavan substituted by a methoxy group at position 4 and hydroxy groups at positions 7 and 2 respectively. It has a role as a plant metabolite. It is a member of hydroxyisoflavans and a methoxyisoflavan. It derives from a hydride of a (R)-isoflavan.
(-)-Vestitol is a natural product found in Pterocarpus soyauxii, Dalbergia sissoo, and other organisms with data available.
See also: Glycyrrhiza uralensis Root (part of).
A methoxyisoflavan that is (R)-isoflavan substituted by a methoxy group at position 4 and hydroxy groups at positions 7 and 2 respectively.

同义名列表

12 个代谢物同义名

2H-1-BENZOPYRAN-7-OL, 3,4-DIHYDRO-3-(2-HYDROXY-4-METHOXYPHENYL)-, (3R)-; (3R)-3-(2-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-7-ol; (3R)-3-(2-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-chromen-7-ol; (3S)-3-(2-hydroxy-4-methoxyphenyl)chroman-7-ol; 7,2-dihydroxy-4-methoxyisoflavan; (R)-(-)-Vestitol; UNII:Z244UVZ669; UNII-9JHS2AVR43; Vestitol, (-)-; (-)-Vestitol; (R)-Vestitol; 9JHS2AVR43



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Lucas Resende Dutra Sousa, Tatiane Roquete Amparo, Gustavo Henrique Bianco de Souza, Aline Tonhela Ferraz, Kátia da Silva Fonseca, Amanda Scofield de Azevedo, Andréa Mendes do Nascimento, Ângela Leão Andrade, Janaína Brandão Seibert, Thalita Marcolan Valverde, Saulo Fehelberg Pinto Braga, Paula Melo de Abreu Vieira, Viviane Martins Rebello Dos Santos. Anti-Trypanosoma cruzi Potential of Vestitol Isolated from Lyophilized Red Propolis. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237812. [PMID: 38067542]
  • Gari Vidal Ccana-Ccapatinta, Jennyfer Andrea Aldana Mejía, Matheus Hikaru Tanimoto, Milton Groppo, Jean Carlos Andrade Sarmento de Carvalho, Jairo Kenupp Bastos. Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The Botanical Sources of Isoflavonoids and Benzophenones in Brazilian Red Propolis. Molecules (Basel, Switzerland). 2020 Apr; 25(9):. doi: 10.3390/molecules25092060. [PMID: 32354180]
  • Jing-Ran Fan, Yi Kuang, Ze-Yuan Dong, Yang Yi, Yan-Xia Zhou, Bin Li, Xue Qiao, Min Ye. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors. Journal of natural products. 2020 04; 83(4):814-824. doi: 10.1021/acs.jnatprod.9b00262. [PMID: 32196343]
  • Bruno Bueno-Silva, Alexandre Marsola, Masaharu Ikegaki, Severino M Alencar, Pedro L Rosalen. The effect of seasons on Brazilian red propolis and its botanical source: chemical composition and antibacterial activity. Natural product research. 2017 Jun; 31(11):1318-1324. doi: 10.1080/14786419.2016.1239088. [PMID: 27701899]
  • Bang-yan Sun, Wen-ji He, Zhen Zhang. [Chemical Constituents from Pueraria alopecuroides Ratten]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Jul; 38(7):1433-5. doi: ". [PMID: 26946841]
  • Jin-Song Liu, Ai-Min Chen, Ying-Sheng Xu, Gang Wang, Guo-Kai Wang. [Phenolic derivatives from Wisteria sinensis sweet caulis]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Sep; 36(9):1437-40. doi: . [PMID: 24620688]
  • Akira Masunaka, Mitsuro Hyakumachi, Shigehito Takenaka. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes and environments. 2011; 26(2):128-34. doi: 10.1264/jsme2.me10176. [PMID: 21502738]
  • Hiroaki Ueda, Yukihiro Sugimoto. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots. Bioscience, biotechnology, and biochemistry. 2010; 74(8):1662-7. doi: 10.1271/bbb.100285. [PMID: 20699571]
  • Kaoru Umehara, Kiyomitsu Nemoto, Ayako Matsushita, Eri Terada, Orawan Monthakantirat, Wanchai De-Eknamkul, Toshio Miyase, Tsutomu Warashina, Masakuni Degawa, Hiroshi Noguchi. Flavonoids from the heartwood of the Thai medicinal plant Dalbergia parviflora and their effects on estrogenic-responsive human breast cancer cells. Journal of natural products. 2009 Dec; 72(12):2163-8. doi: 10.1021/np900676y. [PMID: 19928832]
  • Norimoto Shimada, Shusei Sato, Tomoyoshi Akashi, Yasukazu Nakamura, Satoshi Tabata, Shin-Ichi Ayabe, Toshio Aoki. Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus. DNA research : an international journal for rapid publication of reports on genes and genomes. 2007 Feb; 14(1):25-36. doi: 10.1093/dnares/dsm004. [PMID: 17452423]