Leucylalanine (BioDeep_00000019173)

 

Secondary id: BioDeep_00000566063

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2S)-2-[(2S)-2-amino-4-methylpentanamido]propanoic acid

化学式: C9H18N2O3 (202.1317358)
中文名称: L -亮氨酰- L -丙氨酸 水合物, L-亮氨酰-L-丙氨酸
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 3.33%

Reviewed

Last reviewed on 2024-07-15.

Cite this Page

Leucylalanine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/leucylalanine (retrieved 2024-11-25) (BioDeep RN: BioDeep_00000019173). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(C)CC(C(=O)NC(C)C(=O)O)N
InChI: InChI=1S/C9H18N2O3/c1-5(2)4-7(10)8(12)11-6(3)9(13)14/h5-7H,4,10H2,1-3H3,(H,11,12)(H,13,14)

描述信息

Leucylalanine is a dipeptide composed of leucine and alanine. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

L-Leucyl-L-alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7298-84-2 (retrieved 2024-07-15) (CAS RN: 7298-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Leucyl-L-alanine is a simple dipeptide composed of L-leucine and L-alanine[1].
L-Leucyl-L-alanine is a simple dipeptide composed of L-leucine and L-alanine[1].

同义名列表

16 个代谢物同义名

(2S)-2-[(2S)-2-amino-4-methylpentanamido]propanoic acid; Leucine alanine dipeptide; Leucine-alanine dipeptide; N-L-Leucyl-L-alanine; L-Leucyl-L-alanine; N-Leucylalanine; Leucyl-alanine; Leucylalanine; L-a Dipeptide; LA dipeptide; H-Leu-Ala-OH; L-Leu-L-ala; Leu-ala; L-A; LA; L-?Leucyl-?L-?alanine



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Shouzheng Tian, Yabin Yang, Kai Liu, Zijun Xiong, Lihua Xu, Lixing Zhao. Antimicrobial metabolites from a novel halophilic actinomycete Nocardiopsis terrae YIM 90022. Natural product research. 2014; 28(5):344-6. doi: 10.1080/14786419.2013.858341. [PMID: 24236566]
  • Nicholas J Gleason, Vitaly V Vostrikov, Denise V Greathouse, Christopher V Grant, Stanley J Opella, Roger E Koeppe. Tyrosine replacing tryptophan as an anchor in GWALP peptides. Biochemistry. 2012 Mar; 51(10):2044-53. doi: 10.1021/bi201732e. [PMID: 22364236]
  • Vitaly V Vostrikov, Roger E Koeppe. Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions. Biochemistry. 2011 Sep; 50(35):7522-35. doi: 10.1021/bi2006459. [PMID: 21800919]
  • E Ashrafi, A Alemzadeh, M Ebrahimi, E Ebrahimie, N Dadkhodaei, M Ebrahimi. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution. Bioinformatics and biology insights. 2011 Apr; 5(?):59-82. doi: 10.4137/bbi.s6206. [PMID: 21573033]
  • Vitaly V Vostrikov, Anna E Daily, Denise V Greathouse, Roger E Koeppe. Charged or aromatic anchor residue dependence of transmembrane peptide tilt. The Journal of biological chemistry. 2010 Oct; 285(41):31723-30. doi: 10.1074/jbc.m110.152470. [PMID: 20667827]
  • Griet Van Zeebroeck, Beatriz Monge Bonini, Matthias Versele, Johan M Thevelein. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nature chemical biology. 2009 Jan; 5(1):45-52. doi: 10.1038/nchembio.132. [PMID: 19060912]
  • Arun K Ghosh, Nagaswamy Kumaragurubaran, Lin Hong, Sarang Kulkarni, Xiaoming Xu, Heather B Miller, Dandepally Srinivasa Reddy, Vajira Weerasena, Robert Turner, Wanpin Chang, Gerald Koelsch, Jordan Tang. Potent memapsin 2 (beta-secretase) inhibitors: design, synthesis, protein-ligand X-ray structure, and in vivo evaluation. Bioorganic & medicinal chemistry letters. 2008 Feb; 18(3):1031-6. doi: 10.1016/j.bmcl.2007.12.028. [PMID: 18180160]
  • L P Biały, H Ziemba, E Pleban, C Wójcik. Effects of the combination of a proteasome inhibitor (PSI) and an inhibitor of ubiquitin-ligases (Leu-Ala) on the ultrastructure of human leukemic U937 cells. Folia histochemica et cytobiologica. 2002; 40(2):135-6. doi: ". [PMID: 12056612]
  • J A Demmers, E van Duijn, J Haverkamp, D V Greathouse, R E Koeppe, A J Heck, J A Killian. Interfacial positioning and stability of transmembrane peptides in lipid bilayers studied by combining hydrogen/deuterium exchange and mass spectrometry. The Journal of biological chemistry. 2001 Sep; 276(37):34501-8. doi: 10.1074/jbc.m101401200. [PMID: 11435420]