5-Methoxytryptophol (BioDeep_00000018445)

 

Secondary id: BioDeep_00000405479, BioDeep_00000604145

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


2-(5-methoxy-1H-indol-3-yl)ethan-1-ol

化学式: C11H13NO2 (191.09462380000002)
中文名称: 5-甲氧色氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.03%

分子结构信息

SMILES: COC1=CC2=C(C=C1)NC=C2CCO
InChI: InChI=1S/C11H13NO2/c1-14-9-2-3-11-10(6-9)8(4-5-13)7-12-11/h2-3,6-7,12-13H,4-5H2,1H3

描述信息

5-Methoxytryptophol is synthesized by the pineal gland. Daily rhythms in pineal methoxyindole metabolism have been described in rodents and humans (5-Methoxytryptophol levels are coincident with serotonin levels in rodents pineal) and 5-Methoxytryptophol at its highest during the daylight hours and fall markedly soon after the onset of darkness, coincident with increases in the levels of pineal melatonin and the activities of pineal serotonin-N-acetyltransferase (EC 2.3.1.87, SNAT) and hydroxyindole-O-methyltransferase (EC 2.1.1.4, HIOMT). The fact that the levels of 5-methoxytryptophol and melatonin vary in parallel suggests that the major factor generating the methoxyindole rhythms is not SNAT activity, but perhaps a change in the availability (for metabolism) of "stored" serotonin. When the onset of darkness is delayed by 12 hours, human 5-methoxytryptophol (and melatonin) rhythms usually require 3 or 4 days to adjust to the new lighting regimen. Environmental factors, other than light, that activate the sympathetic nervous system or cause epinephrine to be secreted from the adrenal medulla (e.g., the stress of immobilization; insulin-induced hypoglycemia) can override the inhibitory effects of light and accelerate melatonin synthesis. Rhythms in 5-methoxytryptophol (and melatonin) synthesis apparently persist among animals placed in environments of continuous darkness; the source of the cyclic signal (mediated by the pineal sympathetic nerves) has not yet been identified. Preliminary evidence suggests that levels of a peptide hormone, arginine vasotocin, in rat pineal and sera also exhibit daily rhythms and are increased by norepinephrine. The circadian rhythm of melatonin secretion is generated in the suprachiasmatic nucleus. Sleep disruption, nightly restlessness, sundowning, and other circadian disturbances are frequently seen in Alzheimers disease patients. Changes in the suprachiasmatic nucleus and pineal gland are thought to be the biological basis for these behavioral disturbances. (PMID 288858, 2245336) [HMDB]
5-Methoxytryptophol is synthesized by the pineal gland. Daily rhythms in pineal methoxyindole metabolism have been described in rodents and humans (5-Methoxytryptophol levels are coincident with serotonin levels in rodents pineal) and 5-Methoxytryptophol at its highest during the daylight hours and fall markedly soon after the onset of darkness, coincident with increases in the levels of pineal melatonin and the activities of pineal serotonin-N-acetyltransferase (EC 2.3.1.87, SNAT) and hydroxyindole-O-methyltransferase (EC 2.1.1.4, HIOMT). The fact that the levels of 5-methoxytryptophol and melatonin vary in parallel suggests that the major factor generating the methoxyindole rhythms is not SNAT activity, but perhaps a change in the availability (for metabolism) of "stored" serotonin. When the onset of darkness is delayed by 12 hours, human 5-methoxytryptophol (and melatonin) rhythms usually require 3 or 4 days to adjust to the new lighting regimen. Environmental factors, other than light, that activate the sympathetic nervous system or cause epinephrine to be secreted from the adrenal medulla (e.g., the stress of immobilization; insulin-induced hypoglycemia) can override the inhibitory effects of light and accelerate melatonin synthesis. Rhythms in 5-methoxytryptophol (and melatonin) synthesis apparently persist among animals placed in environments of continuous darkness; the source of the cyclic signal (mediated by the pineal sympathetic nerves) has not yet been identified. Preliminary evidence suggests that levels of a peptide hormone, arginine vasotocin, in rat pineal and sera also exhibit daily rhythms and are increased by norepinephrine. The circadian rhythm of melatonin secretion is generated in the suprachiasmatic nucleus. Sleep disruption, nightly restlessness, sundowning, and other circadian disturbances are frequently seen in Alzheimers disease patients. Changes in the suprachiasmatic nucleus and pineal gland are thought to be the biological basis for these behavioral disturbances. (PMID 288858, 2245336).
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants
5-Methoxytryptophol is a natural indole present in the pineal gland.

同义名列表

5 个代谢物同义名

2-(5-methoxy-1H-indol-3-yl)ethan-1-ol; 5-Methoxy-1H-indole-3-ethanol; 5-Methoxyindole-3-ethanol; 5-Methoxytryptophol; Methoxytryptophol



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(0)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(5)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Ahmet Özer Şehirli, Serkan Sayıner. Daylight is critical to preserve 5-methoxytryptophol levels in suspected and confirmed COVID-19 patients. Medical hypotheses. 2021 Feb; 147(?):110504. doi: 10.1016/j.mehy.2021.110504. [PMID: 33485026]
  • Fatma Kermeoğlu, Umut Aksoy, Abdullah Sebai, Gökçe Savtekin, Hanife Özkayalar, Serkan Sayıner, Ahmet Özer Şehirli. Anti-Inflammatory Effects of Melatonin and 5-Methoxytryptophol on Lipopolysaccharide-Induced Acute Pulpitis in Rats. BioMed research international. 2021; 2021(?):8884041. doi: 10.1155/2021/8884041. [PMID: 33628825]
  • Jeff Dyche, A Michael Anch, Kethera A J Fogler, David W Barnett, Cecil Thomas. Effects of power frequency electromagnetic fields on melatonin and sleep in the rat. Emerging health threats journal. 2012; 5(?):. doi: 10.3402/ehtj.v5i0.10904. [PMID: 22529876]
  • Ewa Sewerynek, J A Wiktorska, M Stuss. 6-methoxytryptophol reduces lipopolysaccharide-induced lipid peroxidation in vitro more effectively than melatonin. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2011 Dec; 62(6):677-83. doi: NULL. [PMID: 22314571]
  • Eduardo Alves de Almeida, Paolo Di Mascio, Tatsuo Harumi, D Warren Spence, Adam Moscovitch, Rüdiger Hardeland, Daniel P Cardinali, Gregory M Brown, S R Pandi-Perumal. Measurement of melatonin in body fluids: standards, protocols and procedures. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. 2011 Jun; 27(6):879-91. doi: 10.1007/s00381-010-1278-8. [PMID: 21104186]
  • R Kaddurah-Daouk, S H Boyle, W Matson, S Sharma, S Matson, H Zhu, M B Bogdanov, E Churchill, R R Krishnan, A J Rush, E Pickering, M Delnomdedieu. Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept. Translational psychiatry. 2011; 1(?):. doi: 10.1038/tp.2011.22. [PMID: 22162828]
  • Venkatramanujam Srinivasan, Charanjit Kaur, Seithikurippu Pandi-Perumal, Gregory M Brown, Daniel P Cardinali. Melatonin and its agonist ramelteon in Alzheimer's disease: possible therapeutic value. International journal of Alzheimer's disease. 2010 Dec; 2011(?):741974. doi: 10.4061/2011/741974. [PMID: 21197086]
  • Jolanta B Zawilska, Małgorzata Berezińska, Jolanta Rosiak, Berthe Vivien-Roels, Debra J Skene, Paul Pévet, Jerzy Z Nowak. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the goose pineal gland, retina, and plasma. General and comparative endocrinology. 2003 Dec; 134(3):296-302. doi: 10.1016/s0016-6480(03)00269-7. [PMID: 14636636]
  • Jolanta B Zawilska, Jolanta Rosiak, Berthe Vivien-Roels, Debra J Skene, Paul Pévet, Jerzy Z Nowak. Daily variation in the concentration of 5-methoxytryptophol and melatonin in the duck pineal gland and plasma. Journal of pineal research. 2002 May; 32(4):214-8. doi: 10.1034/j.1600-079x.2002.01835.x. [PMID: 11982789]
  • H X Wang, F Liu, T B Ng. Examination of pineal indoles and 6-methoxy-2-benzoxazolinone for antioxidant and antimicrobial effects. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2001 Nov; 130(3):379-88. doi: 10.1016/s1532-0456(01)00264-2. [PMID: 11701394]
  • F Liu, T B Ng. Effect of pineal indoles on activities of the antioxidant defense enzymes superoxide dismutase, catalase, and glutathione reductase, and levels of reduced and oxidized glutathione in rat tissues. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2000; 78(4):447-53. doi: 10.1139/o00-018. [PMID: 11012083]
  • J J García, R J Reiter, J J Cabrera, J Pié, J C Mayo, R M Sáinz, D X Tan, W Qi, D Acuña-Castroviejo. 5-methoxytryptophol preserves hepatic microsomal membrane fluidity during oxidative stress. Journal of cellular biochemistry. 2000 Jan; 76(4):651-7. doi: 10.1002/(sici)1097-4644(20000315)76:4<651::aid-jcb13>3.0.co;2-h. [PMID: 10653984]
  • B Vivien-Roels, P Pévet, L Zarazaga, B Malpaux, P Chemineau. Daily and light-at-night induced variations of circulating 5-methoxytryptophol (5-ML) in ewes with respectively high and low nocturnal melatonin secretion. Journal of pineal research. 1999 Nov; 27(4):230-6. doi: 10.1111/j.1600-079x.1999.tb00620.x. [PMID: 10551771]
  • H Kusuhara, T Sekine, N Utsunomiya-Tate, M Tsuda, R Kojima, S H Cha, Y Sugiyama, Y Kanai, H Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. The Journal of biological chemistry. 1999 May; 274(19):13675-80. doi: 10.1074/jbc.274.19.13675. [PMID: 10224140]
  • A Molina-Carballo, A Muñoz-Hoyos, J A Martin-García, J Uberos-Fernández, T Rodriguez-Cabezas, D Acuña-Castroviejo. 5-Methoxytryptophol and melatonin in children: differences due to age and sex. Journal of pineal research. 1996 Sep; 21(2):73-9. doi: 10.1111/j.1600-079x.1996.tb00273.x. [PMID: 8912232]
  • P Lissoni, S Pittalis, F Rovelli, S Zecchini, M Casati, M Tremolada, F Pelizzoni. Immunomodulatory properties of a pineal indole hormone other than melatonin, the 5-methoxytryptophol. Journal of biological regulators and homeostatic agents. 1996 Jan; 10(1):27-30. doi: NULL. [PMID: 9049779]
  • W Y Chan, T B Ng. Effects of pineal indoles on ovarian response to gonadotropin-induced ovulation in mice. Journal of neural transmission. General section. 1995; 100(3):239-46. doi: 10.1007/bf01276461. [PMID: 8748669]
  • F Raynaud, P Pévet. Determination of 5-methoxyindoles in pineal gland and plasma samples by high-performance liquid chromatography with electrochemical detection. Journal of chromatography. 1991 Mar; 564(1):103-13. doi: 10.1016/0378-4347(91)80073-l. [PMID: 1713596]
  • F Raynaud, B Vivien-Roels, M Masson-Pévet, P Pévet. Plasma concentrations of 5-methoxytryptamine, 5-methoxytryptophol and melatonin after 5-methoxytryptamine administration of golden hamsters: physiological implications. Journal of neural transmission. General section. 1991; 84(1-2):33-43. doi: 10.1007/bf01249107. [PMID: 2054148]
  • D J Skene, B Vivien-Roels, P Pevet. 5-Methoxytryptophol injections in the Syrian hamster: plasma and pineal concentrations. Neuroscience letters. 1990 Jan; 108(1-2):138-42. doi: 10.1016/0304-3940(90)90720-t. [PMID: 2406644]
  • D J Skene, A Churchill, F Raynaud, P Pevet, J Arendt. Radioimmunoassay of 5-methoxytryptophol in plasma. Clinical chemistry. 1989 Aug; 35(8):1749-52. doi: 10.1093/clinchem/35.8.1749. [PMID: 2758645]
  • D J Morton. Effect of methoxyindole administration on plasma cation levels in the rat. Journal of pineal research. 1989; 6(2):141-7. doi: 10.1111/j.1600-079x.1989.tb00411.x. [PMID: 2464684]
  • D J Skene, I Smith, J Arendt. Radioimmunoassay of pineal 5-methoxytryptophol in different species: comparison with pineal melatonin content. The Journal of endocrinology. 1986 Jul; 110(1):177-84. doi: 10.1677/joe.0.1100177. [PMID: 3734677]
  • J C Little, M K Vaughan, N Haider, I Smith, R J Reiter. Effects of afternoon injections of O-acetyl-5-methoxytryptophol, melatonin or 5-methoxytryptophol in female Syrian hamsters. Journal of neural transmission. 1986; 66(3-4):291-301. doi: 10.1007/bf01260921. [PMID: 3097250]
  • J van Benthem, J de Koning, I Ebels, M G Balemans. The effect of different photoperiods on the methylating capacity of the pineal gland of adult, male golden hamsters, with special reference to 5-methoxyindoles. Journal of neural transmission. 1986; 67(1-2):147-62. doi: 10.1007/bf01243367. [PMID: 3097253]
  • R M Leone, R E Silman. An investigation of demethylation in the metabolism of methoxytryptamine and methoxytryptophol. Journal of pineal research. 1985; 2(1):87-94. doi: 10.1111/j.1600-079x.1985.tb00630.x. [PMID: 2420959]
  • D J Kennaway. Radioimmunoassay of 5-methoxy tryptophol in sheep plasma and pineal glands. Life sciences. 1983 May; 32(21):2461-9. doi: 10.1016/0024-3205(83)90372-7. [PMID: 6682921]
  • R J Hooper, R E Silman, R M Leone, M D Finnie, S J Carter, M Savage, M Preece, I Smith, P E Mullen. Immediate response of 5-methoxytryptophol in the circulation to hypoglycaemic stress induced by insulin. The Journal of endocrinology. 1979 Nov; 83(2):193-7. doi: 10.1677/joe.0.0830193. [PMID: 118230]
  • S J Carter, C A Laud, I Smith, R M Leone, R J Hooper, R E Silman, M D Finnie, P E Mullen, D L Larson-Carter. Concentration of 5-methoxytryptophol in pineal gland and plasma of the rat. The Journal of endocrinology. 1979 Oct; 83(1):35-40. doi: NULL. [PMID: 521713]
  • R M Leone, R E Silman, R J Hooper, M D Finnie, S J Carter, R Edwards, I Smith, P Towell, P E Mullen. A sensitive and specific assay for 5-methoxytryptophol in plasma. The Journal of endocrinology. 1979 Aug; 82(2):243-51. doi: 10.1677/joe.0.0820243. [PMID: 490080]
  • C A Laud, I Smith. The binding of methoxyindoles to human plasma proteins. Progress in brain research. 1979; 52(?):513-5. doi: 10.1016/s0079-6123(08)62958-1. [PMID: 297247]
  • C Linsell, P E Mullen, R E Silman, R M Leone, M Finney, S J Carter, R J Hooper, I Smith, P Francis. The measurement of the daily fluctuations of 5-methoxytryptophol in human plasma. Progress in brain research. 1979; 52(?):501-5. doi: 10.1016/s0079-6123(08)62956-8. [PMID: 549097]
  • B W Wilson, H J Lynch, Y Ozaki. 5-Methoxytryptophol in rat serum and pineal: detection, quantitation, and evidence for daily rhythmicity. Life sciences. 1978 Sep; 23(10):1019-23. doi: 10.1016/0024-3205(78)90661-6. [PMID: 713680]
  • I Nir, N Hirschmann, M Puder, J Petrank. Changes in rodent thyroid hormones and cyclic-AMP following treatment with pineal indolic compounds. Archives internationales de physiologie et de biochimie. 1978 May; 86(2):353-62. doi: 10.3109/13813457809069910. [PMID: 80990]
  • P DELVIGS, W M MCISAAC, R G TABORSKY. THE METABOLISM OF 5-METHOXYTRYPTOPHOL. The Journal of biological chemistry. 1965 Jan; 240(?):348-50. doi: 10.1016/s0021-9258(18)97655-6. [PMID: 14253435]