2,6-Dimethylpyrazine (BioDeep_00000018333)

 

Secondary id: BioDeep_00000619617, BioDeep_00000866181, BioDeep_00001873697

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


2,6-Dimethyl-1,4-diazine

化学式: C6H8N2 (108.06874479999999)
中文名称: 2,6-二甲基吡嗪
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 11.43%

分子结构信息

SMILES: CC1=CN=CC(=N1)C
InChI: InChI=1S/C6H8N2/c1-5-3-7-4-6(2)8-5/h3-4H,1-2H3

描述信息

2,6-Dimethylpyrazine, also known as fema 3273 or 2,5-DMP, belongs to the class of organic compounds known as pyrazines. Pyrazines are compounds containing a pyrazine ring, which is a six-member aromatic heterocycle, that consists of two nitrogen atoms (at positions 1 and 4) and four carbon atoms. Alkylpyrazines are chemical compounds based on pyrazine with different substitution patterns. 2,6-Dimethylpyrazine is a cocoa, roastbeef, and roastednut tasting compound. 2,6-Dimethylpyrazine has been detected, but not quantified, in tea. This could make 2,6-dimethylpyrazine a potential biomarker for the consumption of these foods. Alkylpyrazines are also formed during the cooking of some foods via Maillard reactions. It occurs naturally in asparagus, black or green tea, crispbread, malt, raw shrimp, soya, squid, Swiss cheeses, and wheat bread. It occurs naturally in baked potato, black or green tea, crispbread, French fries, malt, peated malt, raw asparagus, roasted barley, roasted filberts or pecans, squid, wheat bread, wild rice (Zizania aquatica), and wort.
2,6-dimethylpyrazine, also known as 2,5-dmp, is a member of the class of compounds known as pyrazines. Pyrazines are compounds containing a pyrazine ring, which is a six-member aromatic heterocycle, that consists of two nitrogen atoms (at positions 1 and 4) and four carbon atoms. 2,6-dimethylpyrazine is soluble (in water) and a moderately basic compound (based on its pKa). 2,6-dimethylpyrazine is a cocoa, coffee, and roast beef tasting compound and can be found in a number of food items such as tea, mollusks, kohlrabi, and potato, which makes 2,6-dimethylpyrazine a potential biomarker for the consumption of these food products. 2,6-dimethylpyrazine can be found primarily in feces. 2,6-dimethylpyrazine exists in all eukaryotes, ranging from yeast to humans.
2,6-Dimethylpyrazine is a key aroma compound in Boletus edulis[1].
2,6-Dimethylpyrazine is a key aroma compound in Boletus edulis[1].

同义名列表

11 个代谢物同义名

2,6-Dimethyl-1,4-diazine; 2,6-Dimethylparadiazine; pyrazine, 2,6-dimethyl-; 2,6-Diemthyl-pyrazine; 2,6-Dimethyl-pyrazine; 2,5-DIMETHYLPYRAZINE; 2,6-DIMETHYLPYRAZINE; 3,5-Dimethylpyrazine; 2,6-Dimethylpiazine; FEMA 3273; 2,5-DMP



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jonathan I Kremer, Stephanie Pickard, Lara F Stadlmair, Anika Glaß-Theis, Leon Buckel, Tamara Bakuradze, Gerhard Eisenbrand, Elke Richling. Alkylpyrazines from Coffee are Extensively Metabolized to Pyrazine Carboxylic Acids in the Human Body. Molecular nutrition & food research. 2019 07; 63(14):e1801341. doi: 10.1002/mnfr.201801341. [PMID: 31125183]
  • Xiangyang Guo, Chuankui Song, Chi-Tang Ho, Xiaochun Wan. Contribution of l-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes. Food chemistry. 2018 Oct; 263(?):18-28. doi: 10.1016/j.foodchem.2018.04.117. [PMID: 29784304]
  • Simone B Soso, Jacek A Koziel. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. Scientific reports. 2017 07; 7(1):5137. doi: 10.1038/s41598-017-04973-2. [PMID: 28698649]
  • Min Hee Park, Nam Gyu Seol, Pahn-Shick Chang, Suk Hoo Yoon, Jae Hwan Lee. Effects of roasting conditions on the physicochemical properties and volatile distribution in perilla oils (Perilla frutescens var. japonica). Journal of food science. 2011 Aug; 76(6):C808-16. doi: 10.1111/j.1750-3841.2011.02214.x. [PMID: 21623788]
  • Keisuke Kagami, Kenji Onda, Kitaro Oka, Toshihiko Hirano. Suppression of blood lipid concentrations by volatile Maillard reaction products. Nutrition (Burbank, Los Angeles County, Calif.). 2008 Nov; 24(11-12):1159-66. doi: 10.1016/j.nut.2008.05.010. [PMID: 18586457]
  • Sugima Rappert, Renjie Li, Mariya Kokova, Mathias Antholz, Stephanie Nagorny, Wittko Francke, Rudolf Müller. Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company. Biodegradation. 2007 Oct; 18(5):585-96. doi: 10.1007/s10532-006-9091-5. [PMID: 17120096]
  • Roger N Thompson, Audrey Napier, Kennedy S Wekesa. Attenuation of the production of inositol 1,4,5-trisphosphate in the mouse vomeronasal organ by antibodies against the alphaq/11 subfamily of G-proteins. Chemical senses. 2006 Sep; 31(7):613-9. doi: 10.1093/chemse/bjj066. [PMID: 16757571]
  • Roger N Thompson, B K Robertson, Audrey Napier, Kennedy S Wekesa. Sex-specific responses to urinary chemicals by the mouse vomeronasal organ. Chemical senses. 2004 Nov; 29(9):749-54. doi: 10.1093/chemse/bjh076. [PMID: 15574810]
  • Yong Chen, Chi-Tang Ho. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine. Journal of agricultural and food chemistry. 2002 Apr; 50(8):2372-6. doi: 10.1021/jf011244l. [PMID: 11929299]
  • W Ma, Z Miao, M V Novotny. Role of the adrenal gland and adrenal-mediated chemosignals in suppression of estrus in the house mouse: the lee-boot effect revisited. Biology of reproduction. 1998 Dec; 59(6):1317-20. doi: 10.1095/biolreprod59.6.1317. [PMID: 9828173]
  • A Ohta, K Yamada. [Physiological and pharmacological activities of simple alkyl- and arylpyrazines]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1997 Jul; 117(7):435-47. doi: 10.1248/yakushi1947.117.7_435. [PMID: 9261214]
  • K Yamada, A Shimizu, H Komatsu, R Sakata, A Ohta. Effects of 2,5-dimethylpyrazine on plasma testosterone and polyamines- and acid phosphatase-levels in the rat prostate. Biological & pharmaceutical bulletin. 1994 May; 17(5):730-1. doi: 10.1248/bpb.17.730. [PMID: 7920444]
  • B Jemiolo, M Novotny. Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiology & behavior. 1994 Mar; 55(3):519-22. doi: 10.1016/0031-9384(94)90110-4. [PMID: 8190771]
  • B Jemiolo, M Novotny. Long-term effect of a urinary chemosignal on reproductive fitness in female mice. Biology of reproduction. 1993 Apr; 48(4):926-9. doi: 10.1095/biolreprod48.4.926. [PMID: 8485258]
  • K Yamada, A Shimizu, A Ohta. Effects of dimethylpyrazine isomers on reproductive and accessory reproductive organs in male rats. Biological & pharmaceutical bulletin. 1993 Feb; 16(2):203-6. doi: 10.1248/bpb.16.203. [PMID: 8364457]
  • K Yamada, H Takahashi, A Ohta. Effects of 2,5-dimethylpyrazine on reproductive and accessory reproductive organs in female rats. Research communications in chemical pathology and pharmacology. 1992 Jan; 75(1):99-107. doi: NULL. [PMID: 1626128]