oxfenicine (BioDeep_00000016672)

 

Secondary id: BioDeep_00000897484

natural product BioNovoGene_Lab2019


代谢物信息卡片


4-HYDROXY-L-PHENYLGLYCINE

化学式: C8H9NO3 (167.0582)
中文名称: 4-羟基-L-(+)-2-苯基甘氨酸, (S)-3-羟基苯甘氨酸, L-(+)-对羟基苯甘氨酸
谱图信息: 最多检出来源 Homo sapiens(feces) 22.76%

分子结构信息

SMILES: C1=CC(=CC=C1C(C(=O)O)N)O
InChI: InChI=1S/C8H9NO3/c9-7(8(11)12)5-1-3-6(10)4-2-5/h1-4,7,10H,9H2,(H,11,12)

描述信息

C26170 - Protective Agent > C2079 - Cardioprotective Agent
The L-enantiomer of 4-hydroxyphenylglycine.
D004791 - Enzyme Inhibitors
Same as: D05292
Oxfenicine (L-p-Hydroxyphenylglycine) is an orally active carnitine palmitoyltransferase-1 inhibitor. Oxfenicine inhibits the oxidation of fatty acid in heart. Oxfenicine protects heart from necrotic tissue damage during ischaemia[1][2].

同义名列表

6 个代谢物同义名

L-4-Hydroxyphenylglycine; oxfenicine; 4-HYDROXY-L-PHENYLGLYCINE; L-p-Hydroxyphenylglycine; UK 25842; L-4-Hydroxyphenylglycine



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Wyun Kon Park, Hyun Soo Kim, Soo Hwan Kim, Ja Rang Jung, Carl Lynch, Nar Hyun Min. Intralipid Restoration of Myocardial Contractions Following Bupivacaine-Induced Asystole: Concentration- and Time-Dependence In Vitro. Anesthesia and analgesia. 2017 07; 125(1):91-100. doi: 10.1213/ane.0000000000002124. [PMID: 28537978]
  • Shan-Yu Chen, Yi-Wen Chien, Yun-Peng Chao. In vivo immobilization of D-hydantoinase in Escherichia coli. Journal of bioscience and bioengineering. 2014 Jul; 118(1):78-81. doi: 10.1016/j.jbiosc.2013.12.020. [PMID: 24508023]
  • Wendy Keung, John R Ussher, Jagdip S Jaswal, Monique Raubenheimer, Victoria H M Lam, Cory S Wagg, Gary D Lopaschuk. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes. 2013 Mar; 62(3):711-20. doi: 10.2337/db12-0259. [PMID: 23139350]
  • David Hauton, Germaine M Caldwell. Cardiac lipoprotein lipase activity in the hypertrophied heart may be regulated by fatty acid flux. Biochimica et biophysica acta. 2012 Apr; 1821(4):627-36. doi: 10.1016/j.bbalip.2011.12.004. [PMID: 22226882]
  • Simona M Ceccarelli, Odile Chomienne, Marcel Gubler, Arduino Arduini. Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research. Journal of medicinal chemistry. 2011 May; 54(9):3109-52. doi: 10.1021/jm100809g. [PMID: 21504156]
  • H Yu, S Yang, W Jiang, Y Yang. Efficient biocatalytic production of D-4-hydroxyphenylglycine by whole cells of recombinant Ralstonia pickettii. Folia microbiologica. 2009 Nov; 54(6):509-15. doi: 10.1007/s12223-009-0073-y. [PMID: 20140718]
  • Isidore C Okere, Margaret P Chandler, Tracy A McElfresh, Julie H Rennison, Theodore A Kung, Brian D Hoit, Paul Ernsberger, Martin E Young, William C Stanley. Carnitine palmitoyl transferase-I inhibition is not associated with cardiac hypertrophy in rats fed a high-fat diet. Clinical and experimental pharmacology & physiology. 2007 Jan; 34(1-2):113-9. doi: 10.1111/j.1440-1681.2007.04545.x. [PMID: 17201745]
  • Xihou Yin, T Mark Zabriskie. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology (Reading, England). 2006 Oct; 152(Pt 10):2969-2983. doi: 10.1099/mic.0.29043-0. [PMID: 17005978]
  • M G Marina Prendes, J V García, G Testoni, M A Fernández, J C Perazzo, E A Savino, A Varela. Influence of fasting on the effects of dimethylamiloride and oxfenicine on ischaemic-reperfused rat hearts. Archives of physiology and biochemistry. 2006 Feb; 112(1):31-6. doi: 10.1080/13813450500500357. [PMID: 16754201]
  • Ihsan Ergün, M Cenk Akbostanci, Başol Canbakan, Bilge Koçer, Arzu Ensari, Gökhan Nergizoglu, Kenan Keven. Minimal change nephrotic syndrome with stiff-person syndrome: is there a link?. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2005 Jul; 46(1):e11-4. doi: 10.1053/j.ajkd.2005.03.009. [PMID: 15983949]
  • Gertrud Angsten, Sven Valind, Reijo Takalo, Henrik Neu, Staffan Meurling, Bengt Långström. Inhibition of carnitine-acyl transferase I by oxfenicine studied in vivo with [11C]-labeled fatty acids. Nuclear medicine and biology. 2005 Jul; 32(5):495-503. doi: 10.1016/j.nucmedbio.2005.03.003. [PMID: 15982580]
  • Tom L Broderick, Bryan Glick. Effect of gender and fatty acids on ischemic recovery of contractile and pump function in the rat heart. Gender medicine. 2004 Dec; 1(2):86-99. doi: 10.1016/s1550-8579(04)80014-7. [PMID: 16115587]
  • P Mohan, S Bloom. Lipolysis is an important determinant of isoproterenol-induced myocardial necrosis. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology. 1999 Sep; 8(5):255-61. doi: 10.1016/s1054-8807(99)00017-4. [PMID: 10533957]
  • O D Mjøs, K Ichihara, E Fellenius, T Myrmel, J R Neely. Fatty acids suppress recovery of heart function after hypothermic perfusion. The Annals of thoracic surgery. 1991 Oct; 52(4):965-70. doi: 10.1016/0003-4975(91)91262-t. [PMID: 1929662]
  • B Renstrom, A J Liedtke, S H Nellis. Mechanisms of substrate preference for oxidative metabolism during early myocardial reperfusion. The American journal of physiology. 1990 Aug; 259(2 Pt 2):H317-23. doi: 10.1152/ajpheart.1990.259.2.h317. [PMID: 2386216]
  • B Renstrom, S H Nellis, A J Liedtke. Metabolic oxidation of glucose during early myocardial reperfusion. Circulation research. 1989 Oct; 65(4):1094-101. doi: 10.1161/01.res.65.4.1094. [PMID: 2791220]
  • H Jodalen, K Ytrehus, P Moen, B Hokland, O D Mjøs. Oxfenicine-induced accumulation of lipid in the rat myocardium. Journal of molecular and cellular cardiology. 1988 Mar; 20(3):277-82. doi: 10.1016/s0022-2828(88)80060-9. [PMID: 3398058]
  • E Bachmann, E Weber. Biochemical mechanisms of oxfenicine cardiotoxicity. Pharmacology. 1988; 36(4):238-48. doi: 10.1159/000138390. [PMID: 2967979]
  • F Molaparast-Saless, A J Liedtke, S H Nellis. Effects of the fatty acid blocking agents, oxfenicine and 4-bromocrotonic acid, on performance in aerobic and ischemic myocardium. Journal of molecular and cellular cardiology. 1987 May; 19(5):509-20. doi: 10.1016/s0022-2828(87)80402-9. [PMID: 3625784]
  • A J Liedtke, S H Nellis, O D Mjøs. Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts. The American journal of physiology. 1984 Sep; 247(3 Pt 2):H387-94. doi: 10.1152/ajpheart.1984.247.3.h387. [PMID: 6476133]
  • P Greaves, J Martin, M C Michel, P Mompon. Cardiac hypertrophy in the dog and rat induced by oxfenicine, an agent which modifies muscle metabolism. Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement. 1984; 7(?):488-93. doi: 10.1007/978-3-642-69132-4_103. [PMID: 6240244]
  • L Kaijser, B Berglund, L A Carlson. Change in myocardial metabolism in man by a new stimulator of carbohydrate oxidation. Research communications in chemical pathology and pharmacology. 1979 Dec; 26(3):459-67. doi: NULL. [PMID: 523782]