myo-Inositol 1,4,5-trisphosphate (BioDeep_00000014427)
Secondary id: BioDeep_00000175474, BioDeep_00001868512
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C6H15O15P3 (419.96238300000005)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 2.43%
分子结构信息
SMILES: C1(C(C(C(C(C1OP(=O)(O)O)O)OP(=O)(O)O)OP(=O)(O)O)O)O
InChI: InChI=1S/C6H15O15P3/c7-1-2(8)5(20-23(13,14)15)6(21-24(16,17)18)3(9)4(1)19-22(10,11)12/h1-9H,(H2,10,11,12)(H2,13,14,15)(H2,16,17,18)/t1-,2+,3+,4-,5-,6-/m1/s1
描述信息
myo-Inositol 1,4,5-trisphosphate (CAS: 20298-95-7), also known as Ins(1,4,5)P3 or InsP3, is an intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane (PMID: 22453946). It is released into the cytoplasm where it releases calcium ions from internal stores within the cells endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin (PMID: 15189149). Its transient accumulation is due both to the enhanced metabolism via the Ca2+-calmodulin-sensitive Ins(1,4,5)P3 kinase, as well as a down-regulation of phosphatidylinositol 4,5-bisphosphate hydrolysis (PMID: 3041962). It is a major regulator of apoptotic signalling driving calcium (Ca2+) transients from the endoplasmic reticulum to mitochondria, thereby establishing a functional and physical link between these organelles. It also regulates autophagy through the interaction with Beclin 1 complex, and in particular, its inhibition/depletion strongly induces macroautophagy (PMID: 19325567). In addition, recent evidence suggests that the penetrating sperm delivers into mammalian eggs a novel isoform of phospholipase C (PLC), which promotes the formation of inositol 1,4,5-trisphosphate (PMID: 15362223).
Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cells endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. (PubChem)
同义名列表
28 个代谢物同义名
{[(1R,2S,3R,4R,5S,6R)-2,3,5-trihydroxy-4,6-bis(phosphonooxy)cyclohexyl]oxy}phosphonic acid; D-myo-inositol-1,4,5-tris(hydrogen phosphate), tripotassium salt; D-myo-Inositol-1,4,5-triphosphate (potassium salt); D-myo-Inositol-1,4,5-triphosphate (sodium salt); 1D-Myo-inositol 1,4,5-trisphosphoric acid; D-Myo-inositol 1,4,5-trisphosphoric acid; D-MYO-inositol-1,4,5-triphosphoric acid; 1D-Myo-inositol 1,4,5-trisphosphate; D-Myo-inositol 1,4,5-trisphosphate; Inositol 1,4,5-trisphosphoric acid; D-MYO-inositol-1,4,5-triphosphATE; D-myo-Inositol 1,4,5-triphosphate; myo-Inositol 1,4,5-trisphosphate; myo-Inositol 1,4,5-triphosphate; Myoinositol 1,4,5-triphosphate; Inositol 1,4,5-trisphosphate; Inositol 1,4,5-triphosphate; myo-Inositol trisphosphate; myo-Inositol triphosphate; Inositol trisphosphate; Inositol triphosphate; Triphosphoinositol; Ins(1,4,5)P3; 1,4,5-Insp3; 1,4,5-IP3; InsP3; IP 3; IP3
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:16595
- KEGG: C01245
- PubChem: 439456
- HMDB: HMDB0001498
- Metlin: METLIN3528
- DrugBank: DB03401
- ChEMBL: CHEMBL279107
- Wikipedia: Inositol trisphosphate
- MeSH: Inositol 1,4,5-Trisphosphate
- MetaCyc: INOSITOL-1-4-5-TRISPHOSPHATE
- KNApSAcK: C00007460
- foodb: FDB022657
- chemspider: 388562
- CAS: 103476-24-0
- CAS: 142656-03-9
- CAS: 85166-31-0
- PubChem: 4466
- PDB-CCD: I3P
- 3DMET: B01422
- NIKKAJI: J260.291A
- RefMet: Inositol 1,4,5-trisphosphate
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
366 个相关的代谢反应过程信息。
Reactome(183)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
ATP + I(3,4,5,6)P4 ⟶ ADP + I(1,3,4,5,6)P5
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
ATP + I(1,3,4)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Integration of energy metabolism:
AMP + AMPK heterotrimer (inactive) ⟶ AMPK heterotrimer:AMP
- Regulation of insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- Acetylcholine regulates insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- Free fatty acids regulate insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- G alpha (i) signalling events:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Opioid Signalling:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- G-protein mediated events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- PLC beta mediated events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- Integration of energy metabolism:
AMP + AMPK heterotrimer (inactive) ⟶ AMPK heterotrimer:AMP
- Regulation of insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- Acetylcholine regulates insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- Free fatty acids regulate insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:G-beta:G-gamma ⟶ G-alpha(q) 11,14,15,Q:GTP + G-beta:G-gamma
- G alpha (i) signalling events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- Opioid Signalling:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- G-protein mediated events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- PLC beta mediated events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Opioid Signalling:
H2O + cAMP ⟶ AMP
- G-protein mediated events:
H2O + cAMP ⟶ AMP
- PLC beta mediated events:
H2O + cAMP ⟶ AMP
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Effects of PIP2 hydrolysis:
2AG + H2O ⟶ AA + Glycerol + H+
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Synthesis of IP3 and IP4 in the cytosol:
ATP + I(1,3,4)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the nucleus:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the ER lumen:
H2O + I(1,3,4,5)P4 ⟶ I(1,4,5)P3 + Pi
- Immune System:
ATP + Mg2+ ⟶ AMP + E1 bound ubiquitin + Mg2+ + PPi
- Adaptive Immune System:
ATP + Mg2+ ⟶ AMP + E1 bound ubiquitin + Mg2+ + PPi
- TCR signaling:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Generation of second messenger molecules:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Innate Immune System:
H2O + PC ⟶ Cho + PA
- C-type lectin receptors (CLRs):
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- CLEC7A (Dectin-1) signaling:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- GPVI-mediated activation cascade:
PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Synthesis of IP3 and IP4 in the cytosol:
ATP + I(1,3,4)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the nucleus:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the ER lumen:
H2O + I(1,3,4,5)P4 ⟶ I(1,4,5)P3 + Pi
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- GPVI-mediated activation cascade:
PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Immune System:
ATP + Mg2+ ⟶ AMP + E1 bound ubiquitin + Mg2+ + PPi
- Adaptive Immune System:
ATP + Mg2+ ⟶ AMP + E1 bound ubiquitin + Mg2+ + PPi
- TCR signaling:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Generation of second messenger molecules:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Innate Immune System:
H2O + PC ⟶ Cho + PA
- C-type lectin receptors (CLRs):
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- CLEC7A (Dectin-1) signaling:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- G beta:gamma signalling through PLC beta:
PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- G-protein beta:gamma signalling:
ATP + PI(4,5)P2 ⟶ ADP + PI(3,4,5)P3
- G beta:gamma signalling through PLC beta:
PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Signaling by WNT:
ATP + AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex ⟶ ADP + p-AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex
- Beta-catenin independent WNT signaling:
ATP + CAMK2:CaM ⟶ ADP + p-T286 CAMK2:CaM
- Ca2+ pathway:
ATP + CAMK2:CaM ⟶ ADP + p-T286 CAMK2:CaM
- Muscle contraction:
ATP + Calcium Bound Sarcomere Protein Complex ⟶ ATP:Calcium Bound Sarcomere Protein Complex
- Cardiac conduction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Ion homeostasis:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Adaptive Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- TCR signaling:
ATP + PLCG1:p-3Y-SLP-76:Gads:LAT ⟶ ADP + phosphorylated PLC-gamma1 bound to SLP-76
- Generation of second messenger molecules:
ATP + PLCG1:p-3Y-SLP-76:Gads:LAT ⟶ ADP + phosphorylated PLC-gamma1 bound to SLP-76
- Innate Immune System:
ATP + DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomer + UBE2N:UBE2V1 ⟶ AMP + DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6 + PPi + UBE2N:UBE2V1
- Fc epsilon receptor (FCERI) signaling:
ATP + DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomer + UBE2N:UBE2V1 ⟶ AMP + DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6 + PPi + UBE2N:UBE2V1
- FCERI mediated Ca+2 mobilization:
ATP + p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-TEC kinases:PIP3 ⟶ ADP + p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-TEC kinases
- C-type lectin receptors (CLRs):
ATP + UBE2N:UBE2V1 + p-T231-CARD9:BCL10:MALT1:TRAF6 oligomers ⟶ AMP + PPi + UBE2N:UBE2V1 + p-T231-CARD9:BCL10:MALT1:K63polyUb-TRAF6 oligomers
- CLEC7A (Dectin-1) signaling:
ATP + UBE2N:UBE2V1 + p-T231-CARD9:BCL10:MALT1:TRAF6 oligomers ⟶ AMP + PPi + UBE2N:UBE2V1 + p-T231-CARD9:BCL10:MALT1:K63polyUb-TRAF6 oligomers
- GPVI-mediated activation cascade:
ATP + Homologues of LCP2 ⟶ ADP + Homologues of p-Y113,128,145-LCP2
- Synthesis of IP3 and IP4 in the cytosol:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the nucleus:
ATP + I(1,4,5)P3 ⟶ ADP + I(1,3,4,5)P4
- Synthesis of IPs in the ER lumen:
H2O + I(1,3,4,5)P4 ⟶ I(1,4,5)P3 + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
ATP ⟶ PPi + cAMP
- Infectious disease:
ATP ⟶ PPi + cAMP
- Leishmania infection:
ATP ⟶ PPi + cAMP
- Leishmania parasite growth and survival:
ATP ⟶ PPi + cAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
ATP ⟶ PPi + cAMP
- FCGR3A-mediated IL10 synthesis:
ATP ⟶ PPi + cAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania parasite growth and survival:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Anti-inflammatory response favouring Leishmania parasite infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- FCGR3A-mediated IL10 synthesis:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Disease:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Infectious disease:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Leishmania infection:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Leishmania parasite growth and survival:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Anti-inflammatory response favouring Leishmania parasite infection:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- FCGR3A-mediated IL10 synthesis:
H2O + PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- G beta:gamma signalling through PLC beta:
PI(4,5)P2 ⟶ DAG + I(1,4,5)P3
- Integration of energy metabolism:
AMP + AMPK heterotrimer (inactive) ⟶ AMPK heterotrimer:AMP
- Regulation of insulin secretion:
Homologues of RAPGEF4 + cAMP ⟶ RAPGEF4:cAMP Complex
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
Homologues of RAPGEF4 + cAMP ⟶ RAPGEF4:cAMP Complex
BioCyc(1)
- phospholipases:
H2O + a phosphatidylcholine ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + choline
WikiPathways(7)
- Angiotensin II signaling (acute) in thick ascending limbs:
PIP2 ⟶ IP3
- Immune responses in the epidermis:
PIP2 ⟶ IP3
- PDGF pathway:
Phospholipid (containing arachidonic acid) ⟶ Arachidonic acid
- PDGF pathway:
Phospholipid (containing arachidonic acid) ⟶ Arachidonic acid
- Vitamin D-sensitive calcium signaling in depression:
7-Dehydrocholesterol ⟶ Vitamin D3
- PKC-gamma calcium signaling pathway in ataxia:
PIP2 ⟶ IP3
- Airway smooth muscle cell contraction:
PIP2 ⟶ IP3
Plant Reactome(0)
INOH(15)
- Inositol phosphate metabolism ( Inositol phosphate metabolism ):
O2 + myo-Inositol ⟶ D-Glucuronic acid + H2O
- B cell receptor signaling pathway ( B cell receptor signaling ):
Ras-GDP ⟶ Ras-GTP
- Phospholipase C gamma signaling ( B cell receptor signaling ):
IP3 + IP3 receptor ⟶ IP3:IP3 receptor
- T cell receptor signaling (PLC gamma, PKC, Ras and ERK cascade) ( CD4 T cell receptor signaling (ERK cascade) ):
Ras-GDP ⟶ Ras-GTP
- Heterotrimeric GPCR signaling pathway (through glutamate, G alpha q and PLC beta) ( GPCR GroupI metabotropic glutamate receptor signaling pathway ):
G alpha q_GDP + G beta:G gamma ⟶ G alpha q_GDP:(G beta:G gamma)
- PLC beta signaling ( GPCR GroupI metabotropic glutamate receptor signaling pathway ):
G alpha q_GTP + PLC beta ⟶ adenylate cyclase:G alpha q_GTP
- Cytosolic calcium ion concentration elevation (through IP3 receptor) ( GPCR GroupI metabotropic glutamate receptor signaling pathway ):
IP3 + IP3 receptor ⟶ IP3:IP3 receptor
- Heterotrimeric GPCR signaling pathway (through G alpha q, PLC beta and ERK cascade) ( GPCR signaling (G alpha q) ):
GTP ⟶ GDP
- PLC beta signaling ( GPCR signaling (G alpha q) ):
G alpha q_GTP + PLC beta ⟶ adenylate cyclase:G alpha q_GTP
- Cytosolic calcium ion concentration elevation (through IP3 receptor) ( GPCR signaling (G alpha q) ):
IP3 + IP3 receptor ⟶ IP3:IP3 receptor
- VEGF signaling pathway ( VEGF signaling pathway ):
IP3 + IP3R ⟶ IP3:IP3R
- Cytosolic calcium ion concentration elevation (through IP3 receptor) ( VEGF signaling pathway ):
IP3 + IP3R ⟶ IP3:IP3R
- NGF signaling pathway ( NGF signaling pathway ):
Ras:GDP ⟶ Ras:GTP
- PLC gamma signaling ( PDGF signaling pathway ):
PIP2 ⟶ DAG + IP3
- PLC gamma signaling ( PDGF signaling pathway ):
PIP2 ⟶ DAG + IP3
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(160)
- Muscle/Heart Contraction:
Adenosine triphosphate + Calcium + Water ⟶ Adenosine diphosphate + Calcium + Phosphate
- Muscle/Heart Contraction:
Adenosine triphosphate + Calcium + Water ⟶ Adenosine diphosphate + Calcium + Phosphate
- Muscle/Heart Contraction:
Adenosine triphosphate + Calcium + Water ⟶ Adenosine diphosphate + Calcium + Phosphate
- Inositol Phosphate Metabolism:
1D-myo-Inositol 3-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Activation of PKC Through G Protein-Coupled Receptor:
PIP2(20:4(5Z,8Z,11Z,14Z)/18:0) ⟶ DG(18:0/20:4(5Z,8Z,11Z,14Z)/0:0) + Inositol 1,4,5-trisphosphate
- Activation of PKC Through G Protein-Coupled Receptor:
PIP2(20:4(5Z,8Z,11Z,14Z)/18:0) ⟶ DG(18:0/20:4(5Z,8Z,11Z,14Z)/0:0) + Inositol 1,4,5-trisphosphate
- Activation of PKC Through G Protein-Coupled Receptor:
PIP2(20:4(5Z,8Z,11Z,14Z)/18:0) ⟶ DG(18:0/20:4(5Z,8Z,11Z,14Z)/0:0) + Inositol 1,4,5-trisphosphate
- Activation of PKC Through G Protein-Coupled Receptor:
PIP2(20:4(5Z,8Z,11Z,14Z)/18:0) ⟶ DG(18:0/20:4(5Z,8Z,11Z,14Z)/0:0) + Inositol 1,4,5-trisphosphate
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Fc Epsilon Receptor I Signaling in Mast Cells:
Cytosolic phospholipase A2 ⟶ Arachidonic acid
- Joubert Syndrome:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- D-myo-Inositol (1,4,5)-Trisphosphate Biosynthesis:
a CDP-diacylglycerol + myo-Inositol ⟶ Cytidine monophosphate + Hydrogen Ion + L-1-phosphatidyl-inositol
- Chlorphenamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Pheniramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Dexchlorpheniramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Brompheniramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Dexbrompheniramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Triprolidine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Dimetindene H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Mepyramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Antazoline H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Chloropyramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Talastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Tripelennamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Histapyrrodine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Methapyrilene H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Thonzylamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Diphenhydramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Carbinoxamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Doxylamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Orphenadrine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Bromodiphenhydramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Clemastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Chlorphenoxamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Diphenylpyraline H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Phenyltoloxamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Cyclizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Chlorcyclizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Hydroxyzine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Meclizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Buclizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Oxatomide H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Cetirizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Cinnarizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Levocetirizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Promethazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Alimemazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Cyproheptadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Phenbenzamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Fenethazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Hydroxyethylpromethazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Isothipendyl H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Mequitazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Methdilazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Oxomemazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Azatadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Ketotifen H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Doxepin H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Acrivastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Astemizole H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Bepotastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Bilastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Loratadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Desloratadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Ebastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Terfenadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Fexofenadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Levocabastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Mizolastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Rupatadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Olopatadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Azelastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Thiazinamium H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Quifenadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Betahistine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Emedastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Flunarizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Mebhydrolin H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Phenindamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Epinastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Tolpropamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Embramine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Latrepirdine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Thenyldiamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Propiomazine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Clocinizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Homochlorcyclizine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Temelastine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Alcaftadine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Bamipine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Deptropine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Quetiapine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Mirtazapine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Pimethixene H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Pyrrobutamine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Thenalidine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Tritoqualine H1-Antihistamine Action:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Histamine H1 Receptor Activation:
Histamine H1 receptor (Homo sapiens)_G q (Homo sapiens)_Guanosine diphosphate_G (Homo sapiens) ⟶ G + Guanosine triphosphate_G q (Homo sapiens) + Histamine_Histamine H1 receptor (Homo sapiens)
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Lysophosphatidic Acid LPA1 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA2 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA3 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA4 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA5 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Cadmium Induces DNA Synthesis and Proliferation in Macrophages:
phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol + inositol 1,4,5-trisphosphate
- EGF Signalling Pathway:
phosphatidylinositol 4,5-diphosphate ⟶ Inositol 1,4,5-trisphosphate
- T Cell Receptor Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- Joubert Syndrome:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- BCR Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Phosphatidylinositol Phosphate Metabolism:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- Histamine H1 Receptor Activation:
Histamine H1 receptor (Mus musculus)_G q (Mus musculus)_Guanosine diphosphate_G (Mus musculus) ⟶ G + Guanosine triphosphate_G q (Mus musculus) + Histamine_Histamine H1 receptor (Mus musculus)
- Histamine H1 Receptor Activation:
Histamine H1 receptor (Bos taurus)_G q (Bos taurus)_Guanosine diphosphate_G (Bos taurus) ⟶ G + Guanosine triphosphate_G q (Bos taurus) + Histamine_Histamine H1 receptor (Bos taurus)
- Histamine H1 Receptor Activation:
Histamine H1 receptor (Rattus norvegicus)_G q (Rattus norvegicus)_Guanosine diphosphate_G (Rattus norvegicus) ⟶ G + Guanosine triphosphate_G q (Rattus norvegicus) + Histamine_Histamine H1 receptor (Rattus norvegicus)
- Fc Epsilon Receptor I Signaling in Mast Cells:
Unknown ⟶ Arachidonic acid
- Lysophosphatidic Acid LPA1 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA2 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA3 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA4 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA5 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Cadmium Induces DNA Synthesis and Proliferation in Macrophages:
phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol + inositol 1,4,5-trisphosphate
- Fc Epsilon Receptor I Signaling in Mast Cells:
Unknown ⟶ Arachidonic acid
- Lysophosphatidic Acid LPA1 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA2 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA3 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA4 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA5 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Cadmium Induces DNA Synthesis and Proliferation in Macrophages:
phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol + inositol 1,4,5-trisphosphate
- Fc Epsilon Receptor I Signaling in Mast Cells:
Unknown ⟶ Arachidonic acid
- Lysophosphatidic Acid LPA1 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA2 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA3 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA4 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Lysophosphatidic Acid LPA5 Signalling:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Cadmium Induces DNA Synthesis and Proliferation in Macrophages:
phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol + inositol 1,4,5-trisphosphate
- Joubert Syndrome:
CDP-DG(16:0/18:1(9Z)) + myo-Inositol ⟶ Cytidine monophosphate + PI(16:0/18:1(9Z))
- EGF Signalling Pathway:
phosphatidylinositol 4,5-diphosphate ⟶ Inositol 1,4,5-trisphosphate
- T Cell Receptor Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- BCR Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- EGF Signalling Pathway:
phosphatidylinositol 4,5-diphosphate ⟶ Inositol 1,4,5-trisphosphate
- T Cell Receptor Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- BCR Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- EGF Signalling Pathway:
phosphatidylinositol 4,5-diphosphate ⟶ Inositol 1,4,5-trisphosphate
- T Cell Receptor Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
- BCR Signaling Pathway:
Phosphatidylinositol 4,5-bisphosphate ⟶ Diacylglycerol
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tao Xiong, Zaibao Zhang, Tianyu Fan, Fan Ye, Ziyi Ye. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals.
BMC genomics.
2024 Apr; 25(1):350. doi:
10.1186/s12864-024-10257-7
. [PMID: 38589807] - Filip Vasilev, Yulia Ezhova, Jong Tai Chun. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane.
International journal of molecular sciences.
2021 Sep; 22(19):. doi:
10.3390/ijms221910366
. [PMID: 34638705] - Hasnat Ali Abid, Asuka Inoue, Caroline M Gorvin. Heterogeneity of G protein activation by the calcium-sensing receptor.
Journal of molecular endocrinology.
2021 06; 67(2):41-53. doi:
10.1530/jme-21-0058
. [PMID: 34077389] - Ching-On Wong, Nicholas E Karagas, Jewon Jung, Qiaochu Wang, Morgan A Rousseau, Yufang Chao, Ryan Insolera, Pushpanjali Soppina, Catherine A Collins, Yong Zhou, John F Hancock, Michael X Zhu, Kartik Venkatachalam. Regulation of longevity by depolarization-induced activation of PLC-β-IP3R signaling in neurons.
Proceedings of the National Academy of Sciences of the United States of America.
2021 04; 118(16):. doi:
10.1073/pnas.2004253118
. [PMID: 33859040] - Zhong-Lin Yang, Jian-Ning Chen, Yu-Yang Lu, Min Lu, Qin-Li Wan, Gui-Sheng Wu, Huai-Rong Luo. Inositol polyphosphate multikinase IPMK-1 regulates development through IP3/calcium signaling in Caenorhabditis elegans.
Cell calcium.
2021 01; 93(?):102327. doi:
10.1016/j.ceca.2020.102327
. [PMID: 33316585] - Ami Oguro, Atsushi Sugitani, Yukino Kobayashi, Rika Sakuma, Susumu Imaoka. Bisphenol A stabilizes Nrf2 via Ca2+ influx by direct activation of the IP3 receptor.
The Journal of toxicological sciences.
2021; 46(1):1-10. doi:
10.2131/jts.46.1
. [PMID: 33408296] - Yi Xiao, Anja Rabien, René Buschow, Vyacheslav Amtislavskiy, Jonas Busch, Ergin Kilic, Sonia L Villegas, Bernd Timmermann, Moritz Schütte, Thorsten Mielke, Marie-Laure Yaspo, Klaus Jung, David Meierhofer. Endocytosis-Mediated Replenishment of Amino Acids Favors Cancer Cell Proliferation and Survival in Chromophobe Renal Cell Carcinoma.
Cancer research.
2020 12; 80(24):5491-5501. doi:
10.1158/0008-5472.can-20-1998
. [PMID: 33115803] - Maya Dia, Ludovic Gomez, Helene Thibault, Nolwenn Tessier, Christelle Leon, Christophe Chouabe, Sylvie Ducreux, Noelle Gallo-Bona, Emily Tubbs, Nadia Bendridi, Stephanie Chanon, Aymeric Leray, Lucid Belmudes, Yohann Couté, Mazen Kurdi, Michel Ovize, Jennifer Rieusset, Melanie Paillard. Reduced reticulum-mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy.
Basic research in cardiology.
2020 11; 115(6):74. doi:
10.1007/s00395-020-00835-7
. [PMID: 33258101] - Jingyuan Zhang, Xiaohui Lu, Mei Liu, Hanlu Fan, Han Zheng, Shanshan Zhang, Nafis Rahman, Sławomir Wołczyński, Adam Kretowski, Xiangdong Li. Melatonin inhibits inflammasome-associated activation of endothelium and macrophages attenuating pulmonary arterial hypertension.
Cardiovascular research.
2020 11; 116(13):2156-2169. doi:
10.1093/cvr/cvz312
. [PMID: 31774487] - Ielyaas Cloete, Paula J Bartlett, Vivien Kirk, Andrew P Thomas, James Sneyd. Dual mechanisms of Ca2+ oscillations in hepatocytes.
Journal of theoretical biology.
2020 10; 503(?):110390. doi:
10.1016/j.jtbi.2020.110390
. [PMID: 32628939] - Sana Shabbir, Assad Hafeez, Muhammad Arshad Rafiq, Muhammad Jawad Khan. Estrogen shields women from COVID-19 complications by reducing ER stress.
Medical hypotheses.
2020 Oct; 143(?):110148. doi:
10.1016/j.mehy.2020.110148
. [PMID: 32759016] - Matilda Katan, Shamshad Cockcroft. Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane.
Essays in biochemistry.
2020 09; 64(3):513-531. doi:
10.1042/ebc20200041
. [PMID: 32844214] - Syed Islamuddin Shah, Hwei Ling Ong, Angelo Demuro, Ghanim Ullah. PunctaSpecks: A tool for automated detection, tracking, and analysis of multiple types of fluorescently labeled biomolecules.
Cell calcium.
2020 07; 89(?):102224. doi:
10.1016/j.ceca.2020.102224
. [PMID: 32502904] - Caitlin Cridland, Glenda Gillaspy. Inositol Pyrophosphate Pathways and Mechanisms: What Can We Learn from Plants?.
Molecules (Basel, Switzerland).
2020 Jun; 25(12):. doi:
10.3390/molecules25122789
. [PMID: 32560343] - Fulin Xing, Songyue Qu, Junfang Liu, Jianyu Yang, Fen Hu, Irena Drevenšek-Olenik, Leiting Pan, Jingjun Xu. Intercellular Bridge Mediates Ca2+ Signals between Micropatterned Cells via IP3 and Ca2+ Diffusion.
Biophysical journal.
2020 03; 118(5):1196-1204. doi:
10.1016/j.bpj.2020.01.006
. [PMID: 32023438] - Mengyang Xu, Biying Zhu, Xiuye Cao, Shannai Li, Dan Li, Huihao Zhou, Vesa M Olkkonen, Wenbin Zhong, Jun Xu, Daoguang Yan. OSBP-Related Protein 5L Maintains Intracellular IP3/Ca2+ Signaling and Proliferation in T Cells by Facilitating PIP2 Hydrolysis.
Journal of immunology (Baltimore, Md. : 1950).
2020 03; 204(5):1134-1145. doi:
10.4049/jimmunol.1900671
. [PMID: 31953353] - Xin Hui, Peter Lipp. Investigating the InsP3 Receptor in Living Cells by Caged InsP3.
Methods in molecular biology (Clifton, N.J.).
2020; 2091(?):121-129. doi:
10.1007/978-1-0716-0167-9_10
. [PMID: 31773575] - Xiuye Cao, Jianuo Chen, Dan Li, Peipei Xie, Mengyang Xu, Weize Lin, Shiqian Li, Guoping Pan, Yong Tang, Jun Xu, Vesa M Olkkonen, Daoguang Yan, Wenbin Zhong. ORP4L couples IP3 to ITPR1 in control of endoplasmic reticulum calcium release.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2019 12; 33(12):13852-13865. doi:
10.1096/fj.201900933rr
. [PMID: 31648575] - Xianqiong Huang, Zhaoyang Li, Renshan Sun. High-dose levocetirizine for the treatment of refractory chronic spontaneous urticaria and the effect on the serum inositol triphosphate level.
The Journal of international medical research.
2019 Sep; 47(9):4374-4379. doi:
10.1177/0300060519857768
. [PMID: 31342821] - Caifeng Jiao, Yuquan Duan. The Role of IP3 in NO-Enhanced Chilling Tolerance in Peach Fruit.
Journal of agricultural and food chemistry.
2019 Jul; 67(30):8312-8318. doi:
10.1021/acs.jafc.9b02871
. [PMID: 31287303] - Caifeng Jiao, Yifeng Chai, Yuquan Duan. Inositol 1,4,5-Trisphosphate Mediates Nitric-Oxide-Induced Chilling Tolerance and Defense Response in Postharvest Peach Fruit.
Journal of agricultural and food chemistry.
2019 May; 67(17):4764-4773. doi:
10.1021/acs.jafc.9b00153
. [PMID: 30966738] - David L Prole, Colin W Taylor. Structure and Function of IP3 Receptors.
Cold Spring Harbor perspectives in biology.
2019 04; 11(4):. doi:
10.1101/cshperspect.a035063
. [PMID: 30745293] - Ana M Rossi, Colin W Taylor. IP3 receptors - lessons from analyses ex cellula.
Journal of cell science.
2018 12; 132(4):. doi:
10.1242/jcs.222463
. [PMID: 30552138] - A R Brazhe, D E Postnov, O Sosnovtseva. Astrocyte calcium signaling: Interplay between structural and dynamical patterns.
Chaos (Woodbury, N.Y.).
2018 Oct; 28(10):106320. doi:
10.1063/1.5037153
. [PMID: 30384660] - Ilari Pulli, Taru Lassila, Guoping Pan, Daoguang Yan, Vesa M Olkkonen, Kid Törnquist. Oxysterol-binding protein related-proteins (ORPs) 5 and 8 regulate calcium signaling at specific cell compartments.
Cell calcium.
2018 06; 72(?):62-69. doi:
10.1016/j.ceca.2018.03.001
. [PMID: 29748134] - Karlis Briviba, Margit Schollenberger, Markus Rodehutscord, Ralf Greiner. Dephosphorylation of myo-inositol phosphates in the in vitro intestinal Caco-2 cell model.
International journal of food sciences and nutrition.
2018 Feb; 69(1):46-51. doi:
10.1080/09637486.2017.1330404
. [PMID: 28554270] - Huanchen Wang, Stephen B Shears. Structural features of human inositol phosphate multikinase rationalize its inositol phosphate kinase and phosphoinositide 3-kinase activities.
The Journal of biological chemistry.
2017 11; 292(44):18192-18202. doi:
10.1074/jbc.m117.801845
. [PMID: 28882892] - Michael V Keebler, Colin W Taylor. Endogenous signalling pathways and caged IP3 evoke Ca2+ puffs at the same abundant immobile intracellular sites.
Journal of cell science.
2017 Nov; 130(21):3728-3739. doi:
10.1242/jcs.208520
. [PMID: 28893841] - Mitchell Y Sun, Melissa Geyer, Yulia A Komarova. IP3 receptor signaling and endothelial barrier function.
Cellular and molecular life sciences : CMLS.
2017 11; 74(22):4189-4207. doi:
10.1007/s00018-017-2624-8
. [PMID: 28803370] - Lisza M Bruder, Robert J Gruninger, Colyn P Cleland, Steven C Mosimann. Bacterial PhyA protein-tyrosine phosphatase-like myo-inositol phosphatases in complex with the Ins(1,3,4,5)P4 and Ins(1,4,5)P3 second messengers.
The Journal of biological chemistry.
2017 10; 292(42):17302-17311. doi:
10.1074/jbc.m117.787853
. [PMID: 28848052] - Jian Shi, Francesc Miralles, Jean-Pierre Kinet, Lutz Birnbaumer, William A Large, Anthony P Albert. Evidence that Orai1 does not contribute to store-operated TRPC1 channels in vascular smooth muscle cells.
Channels (Austin, Tex.).
2017 Jul; 11(4):329-339. doi:
10.1080/19336950.2017.1303025
. [PMID: 28301277] - Raphaël Courjaret, Maya Dib, Khaled Machaca. Store-Operated Ca2+ Entry in Oocytes Modulate the Dynamics of IP3 -Dependent Ca2+ Release From Oscillatory to Tonic.
Journal of cellular physiology.
2017 05; 232(5):1095-1103. doi:
10.1002/jcp.25513
. [PMID: 27504787] - Rachel Escue, Kathirvel Kandasamy, Kaushik Parthasarathi. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.
The American journal of pathology.
2017 Apr; 187(4):921-935. doi:
10.1016/j.ajpath.2016.12.014
. [PMID: 28188112] - Gleb P Tolstykh, Melissa Tarango, Caleb C Roth, Bennett L Ibey. Nanosecond pulsed electric field induced dose dependent phosphatidylinositol-4,5-bisphosphate signaling and intracellular electro-sensitization.
Biochimica et biophysica acta. Biomembranes.
2017 03; 1859(3):438-445. doi:
10.1016/j.bbamem.2017.01.003
. [PMID: 28064021] - Wei Huang, Matthew C Cane, Rajarshi Mukherjee, Peter Szatmary, Xiaoying Zhang, Victoria Elliott, Yulin Ouyang, Michael Chvanov, Diane Latawiec, Li Wen, David M Booth, Andrea C Haynes, Ole H Petersen, Alexei V Tepikin, David N Criddle, Robert Sutton. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release.
Gut.
2017 02; 66(2):301-313. doi:
10.1136/gutjnl-2015-309363
. [PMID: 26642860] - Mohammad Alimohammadi, Mohamed Hassen Lahiani, Diamond McGehee, Mariya Khodakovskaya. Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells.
PloS one.
2017; 12(4):e0175778. doi:
10.1371/journal.pone.0175778
. [PMID: 28448505] - Shamshad Cockcroft, Padinjat Raghu. Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap.
The Biochemical journal.
2016 Dec; 473(23):4289-4310. doi:
10.1042/bcj20160514c
. [PMID: 27888240] - László Pecze, Walter Blum, Thomas Henzi, Beat Schwaller. Endogenous TRPV1 stimulation leads to the activation of the inositol phospholipid pathway necessary for sustained Ca2+ oscillations.
Biochimica et biophysica acta.
2016 12; 1863(12):2905-2915. doi:
10.1016/j.bbamcr.2016.09.013
. [PMID: 27663071] - Caifeng Jiao, Pei Wang, Runqiang Yang, Lu Tian, Zhenxin Gu. IP3 Mediates Nitric Oxide-Guanosine 3',5'-Cyclic Monophosphate (NO-cGMP)-Induced Isoflavone Accumulation in Soybean Sprouts under UV-B Radiation.
Journal of agricultural and food chemistry.
2016 Nov; 64(44):8282-8288. doi:
10.1021/acs.jafc.6b02633
. [PMID: 27768311] - Yu-Jia Chu, Xu Chen, Hong-Wei Xue. Ins(1,4,5)P3 Suppresses Protein Degradation in Plant Vacuoles by Regulating SNX-Mediated Protein Sorting.
Molecular plant.
2016 10; 9(10):1440-1443. doi:
10.1016/j.molp.2016.07.009
. [PMID: 27477682] - Ariane Scoumanne, Patricia Molina-Ortiz, Daniel Monteyne, David Perez-Morga, Christophe Erneux, Stéphane Schurmans. Specific expression and function of inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) in wild type and knock-out mice.
Advances in biological regulation.
2016 09; 62(?):1-10. doi:
10.1016/j.jbior.2016.03.001
. [PMID: 27036498] - Jahahreeh Finley. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1.
Medical hypotheses.
2016 Aug; 93(?):34-47. doi:
10.1016/j.mehy.2016.05.012
. [PMID: 27372854] - Lauren A Biwer, Evan P Taddeo, Brandon M Kenwood, Kyle L Hoehn, Adam C Straub, Brant E Isakson. Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition.
Biochimica et biophysica acta.
2016 Jul; 1861(7):671-9. doi:
10.1016/j.bbalip.2016.04.014
. [PMID: 27106139] - Rita Padányi, Katalin Pászty, Luca Hegedűs, Karolina Varga, Béla Papp, John T Penniston, Ágnes Enyedi. Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer.
Biochimica et biophysica acta.
2016 Jun; 1863(6 Pt B):1351-63. doi:
10.1016/j.bbamcr.2015.12.011
. [PMID: 26707182] - József T Tóth, Gergő Gulyás, Dániel J Tóth, András Balla, Gerald R V Hammond, László Hunyady, Tamás Balla, Péter Várnai. BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation.
Biochimica et biophysica acta.
2016 Mar; 1861(3):177-87. doi:
10.1016/j.bbalip.2015.12.005
. [PMID: 26692031] - Sneha Rai, Sonika Bhatnagar. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View.
Omics : a journal of integrative biology.
2016 Mar; 20(3):152-68. doi:
10.1089/omi.2015.0172
. [PMID: 26983022] - Kenichi G N Suzuki. Single-Molecule Imaging of Signal Transduction via GPI-Anchored Receptors.
Methods in molecular biology (Clifton, N.J.).
2016; 1376(?):229-38. doi:
10.1007/978-1-4939-3170-5_19
. [PMID: 26552688] - Zoltan Machaty. Signal transduction in mammalian oocytes during fertilization.
Cell and tissue research.
2016 Jan; 363(1):169-183. doi:
10.1007/s00441-015-2291-8
. [PMID: 26453398] - Idris Bello, Nasiba Salisu Usman, Roziahanim Mahmud, Mohd Zaini Asmawi. Mechanisms underlying the antihypertensive effect of Alstonia scholaris.
Journal of ethnopharmacology.
2015 Dec; 175(?):422-31. doi:
10.1016/j.jep.2015.09.031
. [PMID: 26429073] - Patricia Reuquén, María L Oróstica, Israel Rojas, Patricia Díaz, Alexis Parada-Bustamante, Pedro A Orihuela. Estradiol increases IP3 by a nongenomic mechanism in the smooth muscle cells from the rat oviduct.
Reproduction (Cambridge, England).
2015 Oct; 150(4):331-41. doi:
10.1530/rep-15-0137
. [PMID: 26159830] - Eleodoro Riveras, José M Alvarez, Elena A Vidal, Carolina Oses, Andrea Vega, Rodrigo A Gutiérrez. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis.
Plant physiology.
2015 Oct; 169(2):1397-404. doi:
10.1104/pp.15.00961
. [PMID: 26304850] - Qing He, Yan Zhu, Braden A Corbin, Antonius Plagge, Murat Bastepe. The G protein α subunit variant XLαs promotes inositol 1,4,5-trisphosphate signaling and mediates the renal actions of parathyroid hormone in vivo.
Science signaling.
2015 Aug; 8(391):ra84. doi:
10.1126/scisignal.aaa9953
. [PMID: 26307011] - Amarjeet Singh, Nikita Bhatnagar, Amita Pandey, Girdhar K Pandey. Plant phospholipase C family: Regulation and functional role in lipid signaling.
Cell calcium.
2015 Aug; 58(2):139-46. doi:
10.1016/j.ceca.2015.04.003
. [PMID: 25933832] - Paula J Bartlett, Walson Metzger, Lawrence D Gaspers, Andrew P Thomas. Differential Regulation of Multiple Steps in Inositol 1,4,5-Trisphosphate Signaling by Protein Kinase C Shapes Hormone-stimulated Ca2+ Oscillations.
The Journal of biological chemistry.
2015 Jul; 290(30):18519-33. doi:
10.1074/jbc.m115.657767
. [PMID: 26078455] - Hong Wang, Zhong-Kun Wang, Peng Jiao, Xu-Ping Zhou, Du-Bao Yang, Zhen-Yong Wang, Lin Wang. Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead.
Toxicology.
2015 Jul; 333(?):137-146. doi:
10.1016/j.tox.2015.04.015
. [PMID: 25921245] - Mohammad Alimohammadi, Mohamed H Lahiani, Mariya V Khodakovskaya. Genetic reduction of inositol triphosphate (InsP₃) increases tolerance of tomato plants to oxidative stress.
Planta.
2015 Jul; 242(1):123-35. doi:
10.1007/s00425-015-2289-1
. [PMID: 25893866] - Y M AlSuleimani, C R Hiley. The GPR55 agonist lysophosphatidylinositol relaxes rat mesenteric resistance artery and induces Ca(2+) release in rat mesenteric artery endothelial cells.
British journal of pharmacology.
2015 Jun; 172(12):3043-57. doi:
10.1111/bph.13107
. [PMID: 25652040] - Bradley J Stith. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development.
Developmental biology.
2015 May; 401(2):188-205. doi:
10.1016/j.ydbio.2015.02.020
. [PMID: 25748412] - Mei Hong Zhu, Tae Sik Sung, Kate O'Driscoll, Sang Don Koh, Kenton M Sanders. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal.
American journal of physiology. Cell physiology.
2015 Apr; 308(8):C608-20. doi:
10.1152/ajpcell.00360.2014
. [PMID: 25631870] - Pengcheng Liu, Hong-Juan Peng, Jinsong Zhu. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein.
Proceedings of the National Academy of Sciences of the United States of America.
2015 Apr; 112(15):E1871-9. doi:
10.1073/pnas.1423204112
. [PMID: 25825754] - Leonardo E Pelletán, Laila Suhaiman, Cintia C Vaquer, Matías A Bustos, Gerardo A De Blas, Nicolas Vitale, Luis S Mayorga, Silvia A Belmonte. ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation.
The Journal of biological chemistry.
2015 Apr; 290(15):9823-41. doi:
10.1074/jbc.m114.629006
. [PMID: 25713146] - Alan V Smrcka. Regulation of phosphatidylinositol-specific phospholipase C at the nuclear envelope in cardiac myocytes.
Journal of cardiovascular pharmacology.
2015 Mar; 65(3):203-10. doi:
10.1097/fjc.0000000000000195
. [PMID: 25658460] - Gergő Gulyás, József T Tóth, Dániel J Tóth, István Kurucz, László Hunyady, Tamas Balla, Péter Várnai. Measurement of inositol 1,4,5-trisphosphate in living cells using an improved set of resonance energy transfer-based biosensors.
PloS one.
2015; 10(5):e0125601. doi:
10.1371/journal.pone.0125601
. [PMID: 25932648] - Hideaki Ando, Matsumi Hirose, Laura Gainche, Katsuhiro Kawaai, Benjamin Bonneau, Takeshi Ijuin, Toshiki Itoh, Tadaomi Takenawa, Katsuhiko Mikoshiba. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues.
PloS one.
2015; 10(10):e0141569. doi:
10.1371/journal.pone.0141569
. [PMID: 26509711] - Christopher J Barker, Luosheng Li, Martin Köhler, Per-Olof Berggren. β-Cell Ca(2+) dynamics and function are compromised in aging.
Advances in biological regulation.
2015 Jan; 57(?):112-9. doi:
10.1016/j.jbior.2014.09.005
. [PMID: 25282681] - Jia Guo, Tao Jin, Zi-Qi Lin, Xiao-Xiang Wang, Xiao-Nan Yang, Qing Xia, Ping Xue. Effect of Chaiqin Chengqi Decoction on cholecystokinin receptor 1-mediated signal transduction of pancreatic acinar cells in acute necrotizing pancreatitis rats.
Chinese journal of integrative medicine.
2015 Jan; 21(1):29-35. doi:
10.1007/s11655-014-1750-5
. [PMID: 24817315] - Luosheng Li, Aleksandra Trifunovic, Martin Köhler, Yixin Wang, Jelena Petrovic Berglund, Christopher Illies, Lisa Juntti-Berggren, Nils-Göran Larsson, Per-Olof Berggren. Defects in β-cell Ca2+ dynamics in age-induced diabetes.
Diabetes.
2014 Dec; 63(12):4100-14. doi:
10.2337/db13-1855
. [PMID: 24985350] - Bettina U Wilke, Moritz Lindner, Lea Greifenberg, Alexandra Albus, Yannick Kronimus, Moritz Bünemann, Michael G Leitner, Dominik Oliver. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors.
Nature communications.
2014 Nov; 5(?):5540. doi:
10.1038/ncomms6540
. [PMID: 25420509] - Yanli Nie, Feifei Huang, Shujun Dong, Lin Li, Ping Gao, Heping Zhao, Yingdian Wang, Shengcheng Han. Identification of inositol 1,4,5-trisphosphate-binding proteins by heparin-agarose affinity purification and LTQ ORBITRAP MS in Oryza sativa.
Proteomics.
2014 Oct; 14(20):2335-8. doi:
10.1002/pmic.201400042
. [PMID: 25047511] - Michail Nomikos, Jessica R Sanders, Maria Theodoridou, Junaid Kashir, Emily Matthews, George Nounesis, F Anthony Lai, Karl Swann. Sperm-specific post-acrosomal WW-domain binding protein (PAWP) does not cause Ca2+ release in mouse oocytes.
Molecular human reproduction.
2014 Oct; 20(10):938-47. doi:
10.1093/molehr/gau056
. [PMID: 25057041] - A Pedro Gonçalves, J Miguel Cordeiro, João Monteiro, Alberto Muñoz, Paulo Correia-de-Sá, Nick D Read, Arnaldo Videira. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death.
Journal of cell science.
2014 Sep; 127(Pt 17):3817-29. doi:
10.1242/jcs.152058
. [PMID: 25037570] - Hiroshi Tateishi, Kensaku Anraku, Ryoko Koga, Yoshinari Okamoto, Mikako Fujita, Masami Otsuka. Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for the HIV-1 MA domain.
Organic & biomolecular chemistry.
2014 Jul; 12(27):5006-22. doi:
10.1039/c4ob00350k
. [PMID: 24887478] - Xin Hui, Gregor Reither, Lars Kaestner, Peter Lipp. Targeted activation of conventional and novel protein kinases C through differential translocation patterns.
Molecular and cellular biology.
2014 Jul; 34(13):2370-81. doi:
10.1128/mcb.00040-14
. [PMID: 24732802] - Jing-Bo Wang, Dong-Lei Wang, Hai-Tao Wang, Zhao-Han Wang, Ying Wen, Cui-Ming Sun, Yi-Tong Zhao, Jian Wu, Pei Liu. Tumor necrosis factor-alpha-induced reduction of glomerular filtration rate in rats with fulminant hepatic failure.
Laboratory investigation; a journal of technical methods and pathology.
2014 Jul; 94(7):740-51. doi:
10.1038/labinvest.2014.71
. [PMID: 24887412] - Andras T Deak, Sandra Blass, Muhammad J Khan, Lukas N Groschner, Markus Waldeck-Weiermair, Seth Hallström, Wolfgang F Graier, Roland Malli. IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake.
Journal of cell science.
2014 Jul; 127(Pt 13):2944-55. doi:
10.1242/jcs.149807
. [PMID: 24806964] - Kevin Thurley, Stephen C Tovey, Gregor Moenke, Victoria L Prince, Abha Meena, Andrew P Thomas, Alexander Skupin, Colin W Taylor, Martin Falcke. Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes.
Science signaling.
2014 Jun; 7(331):ra59. doi:
10.1126/scisignal.2005237
. [PMID: 24962706] - James W Putney, Gary S Bird. Calcium signaling in lacrimal glands.
Cell calcium.
2014 Jun; 55(6):290-6. doi:
10.1016/j.ceca.2014.01.001
. [PMID: 24507443] - Krishna P Subedi, Omkar Paudel, James S K Sham. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells.
American journal of physiology. Cell physiology.
2014 Apr; 306(7):C659-69. doi:
10.1152/ajpcell.00341.2013
. [PMID: 24352334] - Mehmet Hakan Ozdener, Selvakumar Subramaniam, Sinju Sundaresan, Omar Sery, Toshihiro Hashimoto, Yoshinori Asakawa, Philippe Besnard, Nada A Abumrad, Naim Akhtar Khan. CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice.
Gastroenterology.
2014 Apr; 146(4):995-1005. doi:
10.1053/j.gastro.2014.01.006
. [PMID: 24412488] - Na Clara Pan, Yun-Fei Bai, Yutao Yang, Tomas Hökfelt, Zhi-Qing David Xu. Activation of galanin receptor 2 stimulates large conductance Ca(2+)-dependent K(+) (BK) channels through the IP3 pathway in human embryonic kidney (HEK293) cells.
Biochemical and biophysical research communications.
2014 Mar; 446(1):316-21. doi:
10.1016/j.bbrc.2014.02.110
. [PMID: 24602615] - C Ding, X Cong, Y Zhang, N Y Yang, S L Li, L L Wu, G Y Yu. Hypersensitive mAChRs are involved in the epiphora of transplanted glands.
Journal of dental research.
2014 Mar; 93(3):306-12. doi:
10.1177/0022034513519107
. [PMID: 24389807] - Jessica M Osmond, Laura V Gonzalez Bosc, Benjimen R Walker, Nancy L Kanagy. Endothelin-1-induced vasoconstriction does not require intracellular Ca²⁺ waves in arteries from rats exposed to intermittent hypoxia.
American journal of physiology. Heart and circulatory physiology.
2014 Mar; 306(5):H667-73. doi:
10.1152/ajpheart.00643.2013
. [PMID: 24414066] - Tae-Jin Kim, Jie Sun, Shaoying Lu, Ying-Xin Qi, Yingxiao Wang. Prolonged mechanical stretch initiates intracellular calcium oscillations in human mesenchymal stem cells.
PloS one.
2014; 9(10):e109378. doi:
10.1371/journal.pone.0109378
. [PMID: 25329052] - Maria Jimena Amaya, André G Oliveira, Lena K Schroeder, Edward S Allgeyer, Joerg Bewersdorf, Michael H Nathanson. Apical localization of inositol 1,4,5-trisphosphate receptors is independent of extended synaptotagmins in hepatocytes.
PloS one.
2014; 9(12):e114043. doi:
10.1371/journal.pone.0114043
. [PMID: 25437447] - John T Penniston, Rita Padányi, Katalin Pászty, Karolina Varga, Luca Hegedus, Agnes Enyedi. Apart from its known function, the plasma membrane Ca²⁺ATPase can regulate Ca²⁺ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels.
Journal of cell science.
2014 Jan; 127(Pt 1):72-84. doi:
10.1242/jcs.132548
. [PMID: 24198396] - Silvia Dragoni, Ilaria Turin, Umberto Laforenza, Duilio Michele Potenza, Cinzia Bottino, Toma N Glasnov, Martina Prestia, Federica Ferulli, Anna Saitta, Alessandra Mosca, Germano Guerra, Vittorio Rosti, Ombretta Luinetti, Carlo Ganini, Camillo Porta, Paolo Pedrazzoli, Franco Tanzi, Daniela Montagna, Francesco Moccia. Store-operated Ca2+ entry does not control proliferation in primary cultures of human metastatic renal cellular carcinoma.
BioMed research international.
2014; 2014(?):739494. doi:
10.1155/2014/739494
. [PMID: 25126575] - Ana-Marija Domijan, Stjepana Kovac, Andrey Y Abramov. Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca²⁺ signal.
Journal of cell science.
2014 Jan; 127(Pt 1):21-6. doi:
10.1242/jcs.138370
. [PMID: 24198393] - Cristina I López Sanjurjo, Stephen C Tovey, Colin W Taylor. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.
PloS one.
2014; 9(10):e111275. doi:
10.1371/journal.pone.0111275
. [PMID: 25337829] - Pamela J Sung, Frederick D Tsai, Horia Vais, Helen Court, Jun Yang, Nicole Fehrenbacher, J Kevin Foskett, Mark R Philips. Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Dec; 110(51):20593-8. doi:
10.1073/pnas.1306431110
. [PMID: 24297914] - Linda Saxe Einbond, Jason Mighty, Stephen Redenti, Hsan-Au Wu. Actein induces calcium release in human breast cancer cells.
Fitoterapia.
2013 Dec; 91(?):28-38. doi:
10.1016/j.fitote.2013.07.025
. [PMID: 23939423] - Sharon Dewitt, Robert J Francis, Maurice B Hallett. Ca²⁺ and calpain control membrane expansion during the rapid cell spreading of neutrophils.
Journal of cell science.
2013 Oct; 126(Pt 20):4627-35. doi:
10.1242/jcs.124917
. [PMID: 23943875] - Masatsugu Toyota, Takuya Furuichi, Masahiro Sokabe, Hitoshi Tatsumi. Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights.
Plant physiology.
2013 Oct; 163(2):543-54. doi:
10.1104/pp.113.223313
. [PMID: 23835410] - J J Martino, B A Wall, E Mastrantoni, B J Wilimczyk, S N La Cava, K Degenhardt, E White, S Chen. Metabotropic glutamate receptor 1 (Grm1) is an oncogene in epithelial cells.
Oncogene.
2013 Sep; 32(37):4366-76. doi:
10.1038/onc.2012.471
. [PMID: 23085756] - Kevin B Clark, E M Eisenstein. Targeting host store-operated Ca(2+) release to attenuate viral infections.
Current topics in medicinal chemistry.
2013 Aug; 13(16):1916-32. doi:
10.2174/15680266113139990128
. [PMID: 23895094] - Seonghee Park, Nikolay Shcheynikov, Jeong Hee Hong, Changyu Zheng, Suk Hyo Suh, Katsuhiro Kawaai, Hideaki Ando, Akihiro Mizutani, Takaya Abe, Hiroshi Kiyonari, George Seki, David Yule, Katsuhiko Mikoshiba, Shmuel Muallem. Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice.
Gastroenterology.
2013 Jul; 145(1):232-241. doi:
10.1053/j.gastro.2013.03.047
. [PMID: 23542070] - Stephen C Tovey, Colin W Taylor. Cyclic AMP directs inositol (1,4,5)-trisphosphate-evoked Ca2+ signalling to different intracellular Ca2+ stores.
Journal of cell science.
2013 May; 126(Pt 10):2305-13. doi:
10.1242/jcs.126144
. [PMID: 23525004] - Eamonn J Dickson, Björn H Falkenburger, Bertil Hille. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.
The Journal of general physiology.
2013 May; 141(5):521-35. doi:
10.1085/jgp.201210886
. [PMID: 23630337] - Björn H Falkenburger, Eamonn J Dickson, Bertil Hille. Quantitative properties and receptor reserve of the DAG and PKC branch of G(q)-coupled receptor signaling.
The Journal of general physiology.
2013 May; 141(5):537-55. doi:
10.1085/jgp.201210887
. [PMID: 23630338] - Christopher J Barker, Per-Olof Berggren. New horizons in cellular regulation by inositol polyphosphates: insights from the pancreatic β-cell.
Pharmacological reviews.
2013 Apr; 65(2):641-69. doi:
10.1124/pr.112.006775
. [PMID: 23429059]