selenodiglutathione (BioDeep_00000012456)

 

Secondary id: BioDeep_00001869526

human metabolite


代谢物信息卡片


(2S)-2-amino-4-{[(1R)-2-[({[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-2-[(carboxymethyl)carbamoyl]ethyl]sulfanyl}selanyl)sulfanyl]-1-[(carboxymethyl)carbamoyl]ethyl]carbamoyl}butanoic acid

化学式: C20H32N6O12S2Se (692.0684762)
中文名称:
谱图信息: 最多检出来源 Helianthus annuus(natural_products) 21%

分子结构信息

SMILES: C(CC(=O)NC(CS[Se]SCC(C(=O)NCC(=O)O)NC(=O)CCC(C(=O)O)N)C(=O)NCC(=O)O)C(C(=O)O)N
InChI: InChI=1S/C20H32N6O12S2Se/c21-9(19(35)36)1-3-13(27)25-11(17(33)23-5-15(29)30)7-39-41-40-8-12(18(34)24-6-16(31)32)26-14(28)4-2-10(22)20(37)38/h9-12H,1-8,21-22H2,(H,23,33)(H,24,34)(H,25,27)(H,26,28)(H,29,30)(H,31,32)(H,35,36)(H,37,38)/t9-,10-,11-,12-/m0/s1

描述信息

Selenodiglutathione, also known as gssesg, is a member of the class of compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. Selenodiglutathione is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Selenodiglutathione can be found in a number of food items such as broad bean, common sage, agave, and babassu palm, which makes selenodiglutathione a potential biomarker for the consumption of these food products. Selenodiglutathione may be a unique E.coli metabolite.

同义名列表

7 个代谢物同义名

(2S)-2-amino-4-{[(1R)-2-[({[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-2-[(carboxymethyl)carbamoyl]ethyl]sulfanyl}selanyl)sulfanyl]-1-[(carboxymethyl)carbamoyl]ethyl]carbamoyl}butanoic acid; (2S)-2-amino-4-{[(1R)-2-[({[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-2-(carboxymethylcarbamoyl)ethyl]sulfanyl}selanyl)sulfanyl]-1-(carboxymethylcarbamoyl)ethyl]carbamoyl}butanoic acid; N,N-((selenodithio)bis(1-((carboxymethyl)carbamoyl)ethylene))di-L-glutamine; N,N-[(selenodithio)bis{1-[(carboxymethyl)carbamoyl]ethylene}]di-L-glutamine; Selenodiglutathione; GS-Se-SG; GSSeSG



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • selenate reduction: NADP+ + glutathione + hydrogen selenide ⟶ H+ + NADPH + glutathioselenol

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

  • Selenium Metabolism: Adenosine triphosphate + hydrogen selenide ion ⟶ Adenosine monophosphate + Phosphate + Selenophosphate
  • Selenium Metabolism: Adenosine triphosphate + hydrogen selenide ion ⟶ Adenosine monophosphate + Phosphate + Selenophosphate

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Yasumitsu Ogra, Kazuaki Takahashi. [Roles of Gut Microflora in Selenium Metabolism of Host Animals]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2021; 141(5):689-693. doi: 10.1248/yakushi.20-00243-4. [PMID: 33952753]
  • Kazuaki Takahashi, Yasumitsu Ogra. Identification of the biliary selenium metabolite and the biological significance of selenium enterohepatic circulation. Metallomics : integrated biometal science. 2020 02; 12(2):241-248. doi: 10.1039/c9mt00274j. [PMID: 31808489]
  • Carolin S Hoefig, Kostja Renko, Josef Köhrle, Marc Birringer, Lutz Schomburg. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. The Journal of nutritional biochemistry. 2011 Oct; 22(10):945-55. doi: 10.1016/j.jnutbio.2010.08.006. [PMID: 21190829]
  • K Last, L Maharaj, J Perry, S Strauss, J Fitzgibbon, T A Lister, S Joel. The activity of methylated and non-methylated selenium species in lymphoma cell lines and primary tumours. Annals of oncology : official journal of the European Society for Medical Oncology. 2006 May; 17(5):773-9. doi: 10.1093/annonc/mdl004. [PMID: 16469755]
  • Janine Kessi, Kurt W Hanselmann. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. The Journal of biological chemistry. 2004 Dec; 279(49):50662-9. doi: 10.1074/jbc.m405887200. [PMID: 15371444]
  • Torsten Lindemann, Holger Hintelmann. Identification of selenium-containing glutathione S-conjugates in a yeast extract by two-dimensional liquid chromatography with inductively coupled plasma MS and nanoelectrospray MS/MS detection. Analytical chemistry. 2002 Sep; 74(18):4602-10. doi: 10.1021/ac020196g. [PMID: 12349960]
  • R Gopalakrishna, Z H Chen, U Gundimeda. Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Archives of biochemistry and biophysics. 1997 Dec; 348(1):37-48. doi: 10.1006/abbi.1997.0335. [PMID: 9390172]
  • M Björnstedt, M Hamberg, S Kumar, J Xue, A Holmgren. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. The Journal of biological chemistry. 1995 May; 270(20):11761-4. doi: 10.1074/jbc.270.20.11761. [PMID: 7744824]
  • M Czauderna, J Konecki, M Wolna. Variation of Se, Zn, Co, Fe and Rb distribution in rats after injection with selenium or sulfur compounds. The International journal of applied radiation and isotopes. 1984 Dec; 35(12):1121-4. doi: 10.1016/0020-708x(84)90145-5. [PMID: 6530302]
  • K A Poirier, J A Milner. Factors influencing the antitumorigenic properties of selenium in mice. The Journal of nutrition. 1983 Nov; 113(11):2147-54. doi: 10.1093/jn/113.11.2147. [PMID: 6631533]