2,7,4'-trihydroxyisoflavanone (BioDeep_00000010776)
Secondary id: BioDeep_00001878338
human metabolite
代谢物信息卡片
化学式: C15H12O5 (272.0684702)
中文名称:
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.3%
分子结构信息
SMILES: C1=CC(=CC=C1C2C(OC3=C(C2=O)C=CC(=C3)O)O)O
InChI: InChI=1S/C15H12O5/c16-9-3-1-8(2-4-9)13-14(18)11-6-5-10(17)7-12(11)20-15(13)19/h1-7,13,15-17,19H
描述信息
2,7,4-trihydroxyisoflavanone is a member of the class of compounds known as isoflavanols. Isoflavanols are polycyclic compounds containing a hydroxylated isoflavan skeleton. 2,7,4-trihydroxyisoflavanone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2,7,4-trihydroxyisoflavanone can be found in a number of food items such as common mushroom, loganberry, sesbania flower, and allium (onion), which makes 2,7,4-trihydroxyisoflavanone a potential biomarker for the consumption of these food products.
同义名列表
数据库引用编号
11 个数据库交叉引用编号
- ChEBI: CHEBI:52047
- KEGG: C15567
- PubChem: 11954208
- HMDB: HMDB0304047
- Metlin: METLIN64296
- MetaCyc: 2-HYDROXYISOFLAVANONE
- foodb: FDB030306
- chemspider: 10128503
- PMhub: MS000024669
- PubChem: 17396559
- NIKKAJI: J1.865.655H
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(4)
代谢反应
31 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Pterocarpan biosynthesis:
2-hydroxyisoflavanone ⟶ H2O + daidzein
INOH(0)
PlantCyc(28)
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- superpathway of pterocarpan biosynthesis (via daidzein):
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via daidzein):
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + calycosin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + pseudobaptigenin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via daidzein):
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- formononetin biosynthesis:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via daidzein):
(6αS,11αS)-2-dimethylallyl-3,6α,9-trihydroxypterocarpan + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + glyceollin II
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + calycosin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + pseudobaptigenin
- formononetin biosynthesis:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via daidzein):
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- formononetin biosynthesis:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Rong-Yan Xu, Peng Nan, Yixin Yang, Haiyun Pan, Tongshui Zhou, Jiakuan Chen. Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-d-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao.
Physiologia plantarum.
2011 Jul; 142(3):265-73. doi:
10.1111/j.1399-3054.2011.01474.x
. [PMID: 21438882] - Evans Kaimoyo, Hans D VanEtten. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin.
Phytochemistry.
2008 Jan; 69(1):76-87. doi:
10.1016/j.phytochem.2007.06.013
. [PMID: 17707445] - Chang-Jun Liu, Bettina E Deavours, Stéphane B Richard, Jean-Luc Ferrer, Jack W Blount, David Huhman, Richard A Dixon, Joseph P Noel. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses.
The Plant cell.
2006 Dec; 18(12):3656-69. doi:
10.1105/tpc.106.041376
. [PMID: 17172354] - Tomoyoshi Akashi, Hans D VanEtten, Yuji Sawada, Catherine C Wasmann, Hiroshi Uchiyama, Shin-ichi Ayabe. Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis.
Phytochemistry.
2006 Dec; 67(23):2525-30. doi:
10.1016/j.phytochem.2006.09.010
. [PMID: 17067644] - Bettina E Deavours, Chang-Jun Liu, Marina A Naoumkina, Yuhong Tang, Mohamed A Farag, Lloyd W Sumner, Joseph P Noel, Richard A Dixon. Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula.
Plant molecular biology.
2006 Nov; 62(4-5):715-33. doi:
10.1007/s11103-006-9050-x
. [PMID: 17001495] - Yuji Sawada, Kengo Kinoshita, Tomoyoshi Akashi, Toshio Aoki, Shin-Ichi Ayabe. Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase.
The Plant journal : for cell and molecular biology.
2002 Sep; 31(5):555-64. doi:
10.1046/j.1365-313x.2002.01378.x
. [PMID: 12207646] - C J Liu, R A Dixon. Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis.
The Plant cell.
2001 Dec; 13(12):2643-58. doi:
10.1105/tpc.010382
. [PMID: 11752378] - . .
.
. doi:
. [PMID: 12610212]
- . .
.
. doi:
. [PMID: 11884690]