9,10-Phenanthrenequinone (BioDeep_00000003645)

 

Secondary id: BioDeep_00001867923

human metabolite blood metabolite


代谢物信息卡片


9,10-dihydrophenanthrene-9,10-dione

化学式: C14H8O2 (208.0524268)
中文名称: 菲醌
谱图信息: 最多检出来源 Homo sapiens(blood) 0.78%

分子结构信息

SMILES: C1=CC=C2C(=C1)C3=CC=CC=C3C(=O)C2=O
InChI: InChI=1S/C14H8O2/c15-13-11-7-3-1-5-9(11)10-6-2-4-8-12(10)14(13)16/h1-8H

描述信息

CONFIDENCE standard compound; INTERNAL_ID 19
D009676 - Noxae > D009153 - Mutagens

同义名列表

9 个代谢物同义名

9,10-dihydrophenanthrene-9,10-dione; 9,10-Phenanthrenequinone; Phenanthrene-9,10-dione; 9,10-Phenanthroquinone; 9,10-Phenanthraquinone; 9,10-Phenanthrenedione; Phenanthrenequinone; Phenanthraquinone; 9,10-Phenanthroquinone



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Dezső Csupor, Tibor Kurtán, Martin Vollár, Norbert Kúsz, Katalin E Kövér, Attila Mándi, Péter Szűcs, Marianna Marschall, Seyyed A Senobar Tahaei, István Zupkó, Judit Hohmann. Pigments of the Moss Paraleucobryum longifolium: Isolation and Structure Elucidation of Prenyl-Substituted 8,8'-Linked 9,10-Phenanthrenequinone Dimers. Journal of natural products. 2020 02; 83(2):268-276. doi: 10.1021/acs.jnatprod.9b00655. [PMID: 32077277]
  • Shulun Jiang, Jian Yang, Di-An Fang. Histological, oxidative and immune changes in response to 9,10-phenanthrenequione, retene and phenanthrene in Takifugu obscurus liver. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering. 2020; 55(7):827-836. doi: 10.1080/10934529.2020.1744998. [PMID: 32308113]
  • Jie Niu, Yong Liu, Weishan Wang, Weiying Lin. Novel two-photon fluorescent probe with high fluorescence quantum yields for tracking lipid droplets in biological systems. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2019 Jun; 216(?):35-44. doi: 10.1016/j.saa.2019.02.106. [PMID: 30877892]
  • Satoshi Endo, Namiki Miyagi, Toshiyuki Matsunaga, Akira Ikari. Rabbit dehydrogenase/reductase SDR family member 11 (DHRS11): Its identity with acetohexamide reductase with broad substrate specificity and inhibitor sensitivity, different from human DHRS11. Chemico-biological interactions. 2019 May; 305(?):12-20. doi: 10.1016/j.cbi.2019.03.026. [PMID: 30926317]
  • Si-Yuan Shao, Chao Wang, Shao-Wei Han, Mo-Han Sun, Shuai Li. Phenanthrenequinone enantiomers with cytotoxic activities from the tubers of Pleione bulbocodioides. Organic & biomolecular chemistry. 2019 01; 17(3):567-572. doi: 10.1039/c8ob02850h. [PMID: 30574990]
  • Mahmoud El-Maghrabey, Naoya Kishikawa, Naotaka Kuroda. Novel Isotope-Coded Derivatization Method for Aldehydes Using 14N/15N-Ammonium Acetate and 9,10-Phenanthrenequinone. Analytical chemistry. 2018 12; 90(23):13867-13875. doi: 10.1021/acs.analchem.8b02458. [PMID: 30408416]
  • Toshiyuki Matsunaga, Kyoko Kamase, Hiroaki Takasawa, Yukiko Yamaji, Satoshi Endo, Ossama El-Kabbani, Akira Ikari. Facilitation of 9,10-phenanthrenequinone-elicited neuroblastoma cell apoptosis by NAD(P)H:quinone oxidoreductase 1. Chemico-biological interactions. 2018 Jan; 279(?):10-20. doi: 10.1016/j.cbi.2017.10.028. [PMID: 29108775]
  • Ekaterina Dubrovskaya, Natalia Pozdnyakova, Sergey Golubev, Anna Muratova, Vyacheslav Grinev, Anastasiya Bondarenkova, Olga Turkovskaya. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere. 2017 Feb; 169(?):224-232. doi: 10.1016/j.chemosphere.2016.11.027. [PMID: 27880920]
  • Mahmoud El-Maghrabey, Naoya Kishikawa, Naotaka Kuroda. 9,10-Phenanthrenequinone as a mass-tagging reagent for ultra-sensitive liquid chromatography-tandem mass spectrometry assay of aliphatic aldehydes in human serum. Journal of chromatography. A. 2016 Sep; 1462(?):80-9. doi: 10.1016/j.chroma.2016.07.082. [PMID: 27521257]
  • Anna Muratova, Natalya Pozdnyakova, Oleg Makarov, Mikhail Baboshin, Boris Baskunov, Nina Myasoedova, Ludmila Golovleva, Olga Turkovskaya. Degradation of phenanthrene by the rhizobacterium Ensifer meliloti. Biodegradation. 2014 Nov; 25(6):787-95. doi: 10.1007/s10532-014-9699-9. [PMID: 25052918]
  • Miki Asahi, Mio Kawai, Takashi Toyama, Yoshito Kumagai, Thanyarat Chuesaard, Ning Tang, Takayuki Kameda, Kazuichi Hayakawa, Akira Toriba. Identification and quantification of in vivo metabolites of 9,10-phenanthrenequinone in human urine associated with producing reactive oxygen species. Chemical research in toxicology. 2014 Jan; 27(1):76-85. doi: 10.1021/tx400338t. [PMID: 24443938]
  • M Jason Hatfield, Lyudmila G Tsurkan, Janice L Hyatt, Carol C Edwards, Andrew Lemoff, Cynthia Jeffries, Bing Yan, Philip M Potter. Modulation of esterified drug metabolism by tanshinones from Salvia miltiorrhiza ('Danshen'). Journal of natural products. 2013 Jan; 76(1):36-44. doi: 10.1021/np300628a. [PMID: 23286284]
  • Dianne Lim, Akihiro Ikeda, Kennedy K-T Vu, Kent T Yamaguchi, Tim R Tyner, Alam S Hasson. Method development for the measurement of quinone levels in urine. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Nov; 879(30):3592-8. doi: 10.1016/j.jchromb.2011.09.051. [PMID: 22024390]
  • M Soledade C Pedras, Yang Yu. Salt stress induces production of melanin related metabolites in the phytopathogenic fungus Leptosphaeria maculans. Natural product communications. 2009 Jan; 4(1):53-8. doi: ". [PMID: 19370875]
  • Satoshi Endo, Toshiyuki Matsunaga, Yukio Kitade, Satoshi Ohno, Kazuo Tajima, Ossama El-Kabbani, Akira Hara. Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase. Biochemical and biophysical research communications. 2008 Dec; 377(4):1326-30. doi: 10.1016/j.bbrc.2008.11.003. [PMID: 19000905]
  • Hideaki Shimada, Misa Ohtaguro, Kazumi Miura, Yorishige Imamura. Inhibitory effects of diesel exhaust components and flavonoids on 20alpha-hydroxysteroid dehydrogenase activity in mouse tissues. Journal of enzyme inhibition and medicinal chemistry. 2007 Aug; 22(4):445-9. doi: 10.1080/14756360601162113. [PMID: 17847711]
  • Petra Brozic, Tina Smuc, Stanislav Gobec, Tea Lanisnik Rizner. Phytoestrogens as inhibitors of the human progesterone metabolizing enzyme AKR1C1. Molecular and cellular endocrinology. 2006 Oct; 259(1-2):30-42. doi: 10.1016/j.mce.2006.08.001. [PMID: 16962702]
  • Alison Hinshelwood, Gail McGarvie, Elizabeth M Ellis. Substrate specificity of mouse aldo-keto reductase AKR7A5. Chemico-biological interactions. 2003 Feb; 143-144(?):263-9. doi: 10.1016/s0009-2797(02)00173-4. [PMID: 12604212]
  • Yoshito Kumagai, Sachie Koide, Keiko Taguchi, Akiko Endo, Yumi Nakai, Toshikazu Yoshikawa, Nobuhiro Shimojo. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chemical research in toxicology. 2002 Apr; 15(4):483-9. doi: 10.1021/tx0100993. [PMID: 11952333]
  • F Belal, S M El-Ashry, M M El Kerdawy, D R El Wasseef. Spectrofluorimetric determination of streptomycin in dosage forms and in spiked plasma using 9,10-phenanthraquinone. Journal of pharmaceutical and biomedical analysis. 2001 Oct; 26(3):435-41. doi: 10.1016/s0731-7085(01)00422-8. [PMID: 11489389]
  • Y Kumagai, T Hayashi, T Miyauchi, A Endo, A Iguchi, M Kiriya-Sakai, S Sakai, K Yuki, M Kikushima, N Shimojo. Phenanthraquinone inhibits eNOS activity and suppresses vasorelaxation. American journal of physiology. Regulatory, integrative and comparative physiology. 2001 Jul; 281(1):R25-30. doi: 10.1152/ajpregu.2001.281.1.r25. [PMID: 11404275]
  • T O'connor, L S Ireland, D J Harrison, J D Hayes. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. The Biochemical journal. 1999 Oct; 343 Pt 2(?):487-504. doi: . [PMID: 10510318]
  • L P Knight, T Primiano, J D Groopman, T W Kensler, T R Sutter. cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis. 1999 Jul; 20(7):1215-23. doi: 10.1093/carcin/20.7.1215. [PMID: 10383892]
  • B M Hasspieler, R T Di Giulio. Dicoumarol-sensitive NADPH: phenanthrenequinone oxidoreductase in channel catfish (Ictalurus punctatus). Toxicology and applied pharmacology. 1994 Apr; 125(2):184-91. doi: 10.1006/taap.1994.1063. [PMID: 7513448]
  • H Shiraga, Y Watanabe, A Mori. Guanidino compound levels in the serum of healthy adults and epileptic patients. Epilepsy research. 1991 Mar; 8(2):142-8. doi: 10.1016/0920-1211(91)90082-q. [PMID: 1712286]
  • Y Kobayashi, H Kubo, T Kinoshita, T Nishikawa. Fluorometric determination of biguanides in serum by high-performance liquid chromatography with reagent-containing mobile phase. Journal of chromatography. 1988 Aug; 430(1):65-71. doi: 10.1016/s0378-4347(00)83134-5. [PMID: 3215962]
  • J D Watkins, J Jarabak. The effect of NaCl intake on 9-ketoprostaglandin reductase activity in the rabbit kidney. Prostaglandins. 1985 Aug; 30(2):335-49. doi: 10.1016/0090-6980(85)90196-0. [PMID: 3901124]
  • S Natelson. Metabolic relationship between urea and guanidino compounds as studied by automated fluorimetry of guanidino compounds in urine. Clinical chemistry. 1984 Feb; 30(2):252-8. doi: . [PMID: 6692530]
  • L Giuliani, G Carmignani, E Belgrano, P Puppo. Transcatheter arterial embolization in urological tumors: the use of isobutyl-2-cyanoacrylate. The Journal of urology. 1979 May; 121(5):630-4. doi: 10.1016/s0022-5347(17)56913-x. [PMID: 439260]