Dextromethorphan (BioDeep_00000001457)
Secondary id: BioDeep_00000397774
human metabolite blood metabolite Chemicals and Drugs
代谢物信息卡片
化学式: C18H25NO (271.193604)
中文名称: 左美沙芬, 右美沙芬
谱图信息:
最多检出来源 Homo sapiens(blood) 18.1%
分子结构信息
SMILES: CN1CCC23CCCCC2C1CC4=C3C=C(C=C4)OC
InChI: InChI=1S/C18H25NO/c1-19-10-9-18-8-4-3-5-15(18)17(19)11-13-6-7-14(20-2)12-16(13)18/h6-7,12,15,17H,3-5,8-11H2,1-2H3
描述信息
Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. Dextromethorphan shows high affinity binding to several regions of the brain, including the medullary cough center. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia. This compound is an NMDA receptor antagonist (receptors, N-methyl-D-aspartate) and acts as a non-competitive channel blocker. It is also used to study the involvement of glutamate receptors in neurotoxicity. [PubChem]
Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia [HMDB]
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic
C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist
D019141 - Respiratory System Agents > D000996 - Antitussive Agents
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent
D002491 - Central Nervous System Agents
同义名列表
91 个代谢物同义名
(1R,9R,10R)-4-methoxy-17-methyl-17-azatetracyclo[7.5.3.0^{1,10}.0^{2,7}]heptadeca-2(7),3,5-triene; Contac severe cold formula maximum strength; Dextromethorphan hydrobromide oros tablets; Dextromethorphan hydrobromide, monohydrate; Dextromethorphan hydrobromide, (+-)-isomer; Dextromethorphan Hydrobromide Monohydrate; Contac day & night cold/flu day caplets; Contac severe cold formula non-drowsy; Tylenol cough + decongestant liquid; Tylenol cold and flu no drowsiness; Tylenol cold and flu multi-symptom; Robitussin pediatric night relief; Robitussin maximum strength cough; Robitussin pediatric cough & cold; Tylenol flu no drowsiness gelcaps; (-)-3-Methoxy-17-methylmorphinan; Hydrochloride, dextromethorphan; (-)-3-Methoxy-N-methylmorphinan; Hydrobromide, dextromethorphan; L-3-Methoxy-17-methylmorphinan; Dextromethorphan hydrochloride; Bayer select head & chest cold; Contac nighttime cold medicine; Contac jr. non-drowsy formula; Dextromethorphan, (+-)-isomer; Dextromethorphan Hydrobromide; PediaCare cough-cold formula; Dextromethorphan bromhydrate; Bayer select night time cold; Drixoral cough & sore throat; Drixoral cough & congestion; Tylenol cold no drowsiness; Robitussin pediatric cough; D-Methorphan hydrobromide; Ornex severe cold formula; Dextromethorphan bromide; Robitussin cough calmers; Bayer select flu relief; Robitussin cold & cough; Endotussin-NN pediatric; Tussi-organidin DM-S NR; St. joseph cough syrup; Demorphan hydrobromide; Tussi-organidin DM NR; Tylenol cough liquid; Ru-tuss expectorant; Sudafed cough syrup; Levomethorphanum; Dextromethorphan; Dexyromethorphan; delta-Methorphan; Destrometerfano; Tussi-organidin; Chloraseptic DM; Dextrometorphan; Coricidin syrup; Levomethorphane; Drixoral cough; Racemethorphan; Levomethorphan; Prestwick_686; Robitussin DM; Endotussin-NN; DL-methorphan; Robitussin CF; Levometorfano; Dextromorphan; Δ-methorphan; D-Methorphan; L-Methorphan; PediaCare 1; Naldecon-DX; Dimetapp DM; Benylin DM; Orthoxicol; Demorphine; Triaminic; Tussar DM; Demorphan; Cerose-DM; Rondec DM; Methorate; Viro-med; Trind-DM; Dimacol; Cough-X; Romilar; Delsym; Hold; DXM; Dextromethorphan
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:146178
- ChEBI: CHEBI:146176
- ChEBI: CHEBI:92579
- ChEBI: CHEBI:4470
- KEGG: C06947
- KEGGdrug: D03742
- PubChem: 5362449
- PubChem: 5360696
- PubChem: 3008
- HMDB: HMDB0001920
- DrugBank: DB00514
- ChEMBL: CHEMBL1908323
- ChEMBL: CHEMBL22207
- ChEMBL: CHEMBL52440
- Wikipedia: Levomethorphan
- MeSH: Dextromethorphan
- foodb: FDB022738
- chemspider: 4642423
- CAS: 524713-56-2
- CAS: 510-53-2
- CAS: 125-70-2
- CAS: 125-71-3
- PMhub: MS000000565
- PubChem: 9162
- NIKKAJI: J9.356D
- RefMet: Dextromethorphan
- KNApSAcK: 4470
分类词条
相关代谢途径
Reactome(8)
BioCyc(0)
PlantCyc(0)
代谢反应
70 个相关的代谢反应过程信息。
Reactome(70)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
DEXM + H+ + Oxygen + TPNH ⟶ CH2O + DEXT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- SARS-CoV Infections:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- Potential therapeutics for SARS:
DEXM + SGMR1_HUMAN ⟶ SIGMAR1:dextromethorphan
- Viral Infection Pathways:
NAD + p-S177-N ⟶ ADPr-p-S177-N + H+ + NAM
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Rakshit S Tanna, James T Nguyen, Deena L Hadi, Matthew E Layton, John R White, Nadja B Cech, Nicholas H Oberlies, Allan E Rettie, Kenneth E Thummel, Mary F Paine. Clinical Assessment of the Drug Interaction Potential of the Psychotropic Natural Product Kratom.
Clinical pharmacology and therapeutics.
2023 Mar; ?(?):. doi:
10.1002/cpt.2891
. [PMID: 36924284] - Shu-Juan Xu, Hao Guo, Long Jin, Zi-Xin Liu, Gao-Jie Xin, Yue You, Wei Hao, Jian-Hua Fu, Jian-Xun Liu. [Effect of Jinzhen Oral Liquid on cough after lipopolysaccharide-induced infection in rats and mechanism].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(17):4707-4714. doi:
10.19540/j.cnki.cjcmm.20220119.701
. [PMID: 36164878] - Seok Hwee Koo, Gaik Hong Soon, Alain Pruvost, Henri Benech, Tiing Leong Ang, Edmund Jon Deoon Lee, Daphne Shih Wen Ang. Evaluation of a six-probe cocktail (caffeine, tolbutamide, omeprazole, dextromethorphan, midazolam, and digoxin) approach to estimate hepatic drug detoxification capability and dosage requirements after a single oral dosing in healthy Chinese volunteers.
Naunyn-Schmiedeberg's archives of pharmacology.
2022 07; 395(7):815-826. doi:
10.1007/s00210-022-02235-1
. [PMID: 35394133] - Sara Shum, Aprajita Yadav, Emily Fay, Sue Moreni, Jennie Mao, Lindsay Czuba, Celine Wang, Nina Isoherranen, Mary F Hebert. Infant Dextromethorphan and Dextrorphan Exposure via Breast Milk From Mothers Who Are CYP2D6 Extensive Metabolizers.
Journal of clinical pharmacology.
2022 06; 62(6):747-755. doi:
10.1002/jcph.2012
. [PMID: 34889461] - Indrani Sarkar, Arnab Sen. In silico screening predicts common cold drug Dextromethorphan along with Prednisolone and Dexamethasone can be effective against novel Coronavirus disease (COVID-19).
Journal of biomolecular structure & dynamics.
2022 05; 40(8):3706-3710. doi:
10.1080/07391102.2020.1850528
. [PMID: 33225870] - Simeon Rüdesheim, Dominik Selzer, Uwe Fuhr, Matthias Schwab, Thorsten Lehr. Physiologically-based pharmacokinetic modeling of dextromethorphan to investigate interindividual variability within CYP2D6 activity score groups.
CPT: pharmacometrics & systems pharmacology.
2022 04; 11(4):494-511. doi:
10.1002/psp4.12776
. [PMID: 35257505] - Yu-Hua Shi, Qin-Wei Huang, She-Min Zhu, Yue-Mei Zhou, Li-Jiang Zhang, Wen-Kang Huang, Jin-Jin Shao, Jian-Liang Zhou, Wen-Ting Zhang. Chemical profiling of Fritillariae thunbergii Miq prepared by different processing methods reveals two new quality markers: Zhebeininoside and imperialine-3-β-D-glucoside.
Journal of ethnopharmacology.
2022 Jan; 283(?):114670. doi:
10.1016/j.jep.2021.114670
. [PMID: 34653522] - En-Shao Liu, Nai-Ching Chen, Tzu-Ming Jao, Chien-Liang Chen. Dextromethorphan Reduces Oxidative Stress and Inhibits Uremic Artery Calcification.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212277
. [PMID: 34830159] - Tae Woo Jung, Eui Jin Hwang, Do Hyeon Pyun, Tae Jin Kim, Hyun Jung Lee, A M Abd El-Aty, Joon Seok Bang, Hyoung-Chun Kim, Ji Hoon Jeong. 3-hydroxymorphinan enhances mitochondrial biogenesis and adipocyte browning through AMPK-dependent pathway.
Biochemical and biophysical research communications.
2021 11; 577(?):17-23. doi:
10.1016/j.bbrc.2021.08.083
. [PMID: 34487960] - Xiaoshu Dai, Michael D Karol, Matthew Hitron, Marjie L Hard, Matthew T Goulet, Colleen F McLaughlin, Scott J Brantley. Napabucasin Drug-Drug Interaction Potential, Safety, Tolerability, and Pharmacokinetics Following Oral Dosing in Healthy Adult Volunteers.
Clinical pharmacology in drug development.
2021 08; 10(8):824-839. doi:
10.1002/cpdd.961
. [PMID: 34107166] - A David Rodrigues, Madelé van Dyk, Michael J Sorich, Alia Fahmy, Zivile Useckaite, Lauren A Newman, Asha J Kapetas, Reham Mounzer, Linda S Wood, Jillian G Johnson, Andrew Rowland. Exploring the Use of Serum-Derived Small Extracellular Vesicles as Liquid Biopsy to Study the Induction of Hepatic Cytochromes P450 and Organic Anion Transporting Polypeptides.
Clinical pharmacology and therapeutics.
2021 07; 110(1):248-258. doi:
10.1002/cpt.2244
. [PMID: 33792897] - Pierre Baumann, Gilles Bertschy, Fritz Ramseier, Rico Nil. Plasma Concentrations and Cardiovascular Effects of Citalopram Enantiomers After Oral Versus Infusion Citalopram Therapy in Dextromethorphan-Mephenytoin-Phenotyped Patients With Major Depression.
Therapeutic drug monitoring.
2021 06; 43(3):436-442. doi:
10.1097/ftd.0000000000000824
. [PMID: 33060488] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Youyi Peng, Qiang Zhang, William J Welsh. Novel Sigma 1 Receptor Antagonists as Potential Therapeutics for Pain Management.
Journal of medicinal chemistry.
2021 01; 64(1):890-904. doi:
10.1021/acs.jmedchem.0c01964
. [PMID: 33372782] - Motoyasu Miura, Shimako Tanaka, Shinya Uchida, Chiaki Kamiya, Naoki Katayama, Akio Hakamata, Keiichi Odagiri, Naoki Inui, Junichi Kawakami, Hiroshi Watanabe, Noriyuki Namiki. Prediction of the Area under the Curve Using Limited-Point Blood Sampling in a Cocktail Study to Assess Multiple CYP Activities.
Biological & pharmaceutical bulletin.
2021; 44(6):762-770. doi:
10.1248/bpb.b20-00691
. [PMID: 34078808] - Rakshit S Tanna, Dan-Dan Tian, Nadja B Cech, Nicholas H Oberlies, Allan E Rettie, Kenneth E Thummel, Mary F Paine. Refined Prediction of Pharmacokinetic Kratom-Drug Interactions: Time-Dependent Inhibition Considerations.
The Journal of pharmacology and experimental therapeutics.
2021 01; 376(1):64-73. doi:
10.1124/jpet.120.000270
. [PMID: 33093187] - Preeti Pandey, Kartikay Prasad, Amresh Prakash, Vijay Kumar. Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis.
Journal of molecular medicine (Berlin, Germany).
2020 12; 98(12):1659-1673. doi:
10.1007/s00109-020-01980-1
. [PMID: 32965508] - Eszter Fliszár-Nyúl, Violetta Mohos, Rita Csepregi, Přemysl Mladěnka, Miklós Poór. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Nov; 131(?):110732. doi:
10.1016/j.biopha.2020.110732
. [PMID: 32942157] - Milena Gusella, Felice Pasini, Barbara Corso, Laura Bertolaso, Giovanni De Rosa, Cristina Falci, Yasmina Modena, Carmen Barile, Donatella Da Corte Z, AnnaPaola Fraccon, Silvia Toso, Elisabetta Cretella, Antonella Brunello, Caterina Modonesi, Romana Segati, Cristina Oliani, Nadia Minicuci, Roberto Padrini. Predicting steady-state endoxifen plasma concentrations in breast cancer patients by CYP2D6 genotyping or phenotyping. Which approach is more reliable?.
Pharmacology research & perspectives.
2020 10; 8(5):e00646. doi:
10.1002/prp2.646
. [PMID: 32813313] - Tim T Häbe, Chang Liu, Tom R Covey, Roman P Simon, Wolfgang Reindl, Frank H Büttner, Martin Winter, Daniel Bischoff, Andreas H Luippold, Frank Runge. Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry.
Analytical chemistry.
2020 09; 92(18):12242-12249. doi:
10.1021/acs.analchem.0c01632
. [PMID: 32786476] - Jingyi Zhou, Shuaihui Liu, Luying Guo, Rending Wang, Jianghua Chen, Jia Shen. NMDA receptor-mediated CaMKII/ERK activation contributes to renal fibrosis.
BMC nephrology.
2020 09; 21(1):392. doi:
10.1186/s12882-020-02050-x
. [PMID: 32907546] - P Kellie Turner, Stephen D Hall, Sonya C Chapman, Jessica L Rehmel, Jane E Royalty, Yingying Guo, Palaniappan Kulanthaivel. Abemaciclib Does Not Have a Clinically Meaningful Effect on Pharmacokinetics of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 Substrates in Patients with Cancer.
Drug metabolism and disposition: the biological fate of chemicals.
2020 09; 48(9):796-803. doi:
10.1124/dmd.119.090092
. [PMID: 32581049] - Younah Kim, Jung Jae Jo, Piljoung Cho, Riya Shrestha, Kyu Min Kim, Sung Hwan Ki, Kyung-Sik Song, Kwang-Hyeon Liu, Im-Sook Song, Ju-Hyun Kim, Jae-Mok Lee, Sangkyu Lee. Characterization of red ginseng-drug interaction by CYP3A activity increased in high dose administration in mice.
Biopharmaceutics & drug disposition.
2020 Jul; 41(7):295-306. doi:
10.1002/bdd.2246
. [PMID: 32557706] - Richard B van Breemen, Luying Chen, Alyssa Tonsing-Carter, Suzanne Banuvar, Elena Barengolts, Marlos Viana, Shao-Nong Chen, Guido F Pauli, Judy L Bolton. Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women.
Journal of agricultural and food chemistry.
2020 May; 68(18):5212-5220. doi:
10.1021/acs.jafc.0c01077
. [PMID: 32285669] - Pierre Baumann, Chin B Eap, Markus Gastpar. The effect of perazine on the CYP2D6 and CYP2C19 phenotypes as measured by the dextromethorphan and mephenytoin tests in psychiatric patients.
Basic & clinical pharmacology & toxicology.
2020 May; 126(5):444-447. doi:
10.1111/bcpt.13373
. [PMID: 31814297] - Monalisa Dhuya, Murari Mohan Pal, Avijit Hazra, Suparna Chatterjee, Nithya Gogtay. Cytochrome P450 2D6 polymorphism in eastern Indian population.
Indian journal of pharmacology.
2020 May; 52(3):189-195. doi:
10.4103/ijp.ijp_530_17
. [PMID: 32874001] - Yao Fu, Xiaoxiao Tian, Lingling Han, Yilin Li, Ying Peng, Jiang Zheng. Mechanism-based inactivation of cytochrome P450 2D6 by Notopterol.
Chemico-biological interactions.
2020 May; 322(?):109053. doi:
10.1016/j.cbi.2020.109053
. [PMID: 32198085] - Shane K Eagles, Xiaosuo Wang, Annette S Gross, Andrew J McLachlan. An improved cytochrome P450 phenotyping cocktail with a simplified and highly sensitive UHPLC-MS/MS assay in human plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2020 Mar; 1140(?):122013. doi:
10.1016/j.jchromb.2020.122013
. [PMID: 32050158] - Luying Chen, Richard B van Breemen. Validation of a sensitive UHPLC-MS/MS method for cytochrome P450 probe substrates caffeine, tolbutamide, dextromethorphan, and alprazolam in human serum reveals drug contamination of serum used for research.
Journal of pharmaceutical and biomedical analysis.
2020 Feb; 179(?):112983. doi:
10.1016/j.jpba.2019.112983
. [PMID: 31744669] - Ivy H Song, Katarina Ilic, Joseph Murphy, Kenneth Lasseter, Patrick Martin. Effects of Maribavir on P-Glycoprotein and CYP2D6 in Healthy Volunteers.
Journal of clinical pharmacology.
2020 01; 60(1):96-106. doi:
10.1002/jcph.1504
. [PMID: 31385617] - Mohamed-Eslam F Mohamed, Tian Feng, Jeffrey V Enejosa, Ogert Fisniku, Ahmed A Othman. Effects of Upadacitinib Coadministration on the Pharmacokinetics of Sensitive Cytochrome P450 Probe Substrates: A Study With the Modified Cooperstown 5+1 Cocktail.
Journal of clinical pharmacology.
2020 01; 60(1):86-95. doi:
10.1002/jcph.1496
. [PMID: 31378969] - Cheng-Tsung Liu, Li-Ting Kao, Jui-Hu Shih, Wu-Chien Chien, Chuang-Hsin Chiu, Kuo-Hsing Ma, Yuahn-Sieh Huang, Cheng-Yi Cheng, Chyng-Yann Shiue, I-Hsun Li. The effect of dextromethorphan use in Parkinson's disease: A 6-hydroxydopamine rat model and population-based study.
European journal of pharmacology.
2019 Nov; 862(?):172639. doi:
10.1016/j.ejphar.2019.172639
. [PMID: 31491406] - Hsien-Tsung Yao, Jia-Hsuan Lin, Yun-Ta Liu, Mei-Ling Li, Wenchang Chiang. Food-Drug Interaction between the Adlay Bran Oil and Drugs in Rats.
Nutrients.
2019 Oct; 11(10):. doi:
10.3390/nu11102473
. [PMID: 31618937] - Zandisiwe E Magwebu, Mikateko Mazinu, Sahar Abdul-Rasool, Chesa G Chauke. The effect of hyperglycinemic treatment in captive-bred Vervet monkeys (Chlorocebus aethiops).
Metabolic brain disease.
2019 10; 34(5):1467-1472. doi:
10.1007/s11011-019-00449-6
. [PMID: 31230217] - Sebastian Trousil, Patrizia Lee, Robert J Edwards, Lynn Maslen, Jingky P Lozan-Kuehne, Ramya Ramaswami, Eric O Aboagye, Stephen Clarke, Christopher Liddle, Rohini Sharma. Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation.
British journal of pharmacology.
2019 09; 176(18):3712-3722. doi:
10.1111/bph.14776
. [PMID: 31236938] - Cheng-Tsung Liu, Yuahn-Sieh Huang, Hsin-Chien Chen, Kuo-Hsing Ma, Chih-Hung Wang, Chuang-Hsin Chiu, Jui-Hu Shih, Hsiao-Hsien Kang, Chyng-Yann Shiue, I-Hsun Li. Evaluation of brain SERT with 4-[18F]-ADAM/micro-PET and hearing protective effects of dextromethorphan in hearing loss rat model.
Toxicology and applied pharmacology.
2019 09; 378(?):114604. doi:
10.1016/j.taap.2019.114604
. [PMID: 31153898] - Catherine Zahner, Esther Kruttschnitt, Julia Uricher, Michael Lissy, Martin Hirsch, Simon Nicolussi, Stephan Krähenbühl, Jürgen Drewe. No Clinically Relevant Interactions of St. John's Wort Extract Ze 117 Low in Hyperforin With Cytochrome P450 Enzymes and P-glycoprotein.
Clinical pharmacology and therapeutics.
2019 08; 106(2):432-440. doi:
10.1002/cpt.1392
. [PMID: 30739325] - Faith Stevison, Mika Kosaka, Jane R Kenny, Susan Wong, Cathryn Hogarth, John K Amory, Nina Isoherranen. Does In Vitro Cytochrome P450 Downregulation Translate to In Vivo Drug-Drug Interactions? Preclinical and Clinical Studies With 13-cis-Retinoic Acid.
Clinical and translational science.
2019 07; 12(4):350-360. doi:
10.1111/cts.12616
. [PMID: 30681285] - Travis D Olives, Sean P Boley, Jenna M LeRoy, Samuel J Stellpflug. Ten Years of Robotripping: Evidence of Tolerance to Dextromethorphan Hydrobromide in a Long-Term User.
Journal of medical toxicology : official journal of the American College of Medical Toxicology.
2019 Jul; 15(3):192-197. doi:
10.1007/s13181-019-00706-1
. [PMID: 30903576] - Ran Zhou, Shih-Heng Chen, Guorong Li, Hui-Ling Chen, YuXin Liu, Hung-Ming Wu, Yubao Wang, Jing Feng, Jau-Shyong Hong. Ultralow doses of dextromethorphan protect mice from endotoxin-induced sepsis-like hepatotoxicity.
Chemico-biological interactions.
2019 Apr; 303(?):50-56. doi:
10.1016/j.cbi.2019.02.025
. [PMID: 30822415] - Krishna K Machavaram, Chihiro Endo-Tsukude, Kimio Terao, Katherine L Gill, Oliver J Hatley, Iain Gardner, Neil Parrott, Patricia Sanwald Ducray. Simulating the Impact of Elevated Levels of Interleukin-6 on the Pharmacokinetics of Various CYP450 Substrates in Patients with Neuromyelitis Optica or Neuromyelitis Optica Spectrum Disorders in Different Ethnic Populations.
The AAPS journal.
2019 03; 21(3):42. doi:
10.1208/s12248-019-0309-y
. [PMID: 30887238] - Jing Wang, Zhi-Yi Zhang, Sharon Lu, Dan Powers, Vikram Kansra, Xiaodong Wang. Effects of rolapitant administered orally on the pharmacokinetics of dextromethorphan (CYP2D6), tolbutamide (CYP2C9), omeprazole (CYP2C19), efavirenz (CYP2B6), and repaglinide (CYP2C8) in healthy subjects.
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer.
2019 Mar; 27(3):819-827. doi:
10.1007/s00520-018-4331-x
. [PMID: 30084103] - Michael B Bolger, Joyce S Macwan, Muhammad Sarfraz, May Almukainzi, Raimar Löbenberg. The Irrelevance of In Vitro Dissolution in Setting Product Specifications for Drugs Like Dextromethorphan That are Subject to Lysosomal Trapping.
Journal of pharmaceutical sciences.
2019 Jan; 108(1):268-278. doi:
10.1016/j.xphs.2018.09.036
. [PMID: 30316900] - Sook Jin Seong, Woo Youl Kang, Jae-Kyung Heo, Jungjae Jo, Won Gu Choi, Kwang-Hyeon Liu, Sangkyu Lee, Min-Koo Choi, Yong-Hae Han, Hye Suk Lee, Boram Ohk, Hae Won Lee, Im-Sook Song, Young-Ran Yoon. A Comprehensive In Vivo and In Vitro Assessment of the Drug Interaction Potential of Red Ginseng.
Clinical therapeutics.
2018 08; 40(8):1322-1337. doi:
10.1016/j.clinthera.2018.06.017
. [PMID: 30078466] - Amber R Watson, Ali Roberts. Identifying Levorphanol Ingestion Using Urine Biomarkers in Health Care Patients.
Pain physician.
2018 03; 21(2):E167-E171. doi:
. [PMID: 29565959]
- Waheed Adeola Adedeji, Sharon Iyobor Igbinoba, Titilayo O Fakeye, Ibrahim Adebayo Oladosu, Fatai Adewale Fehintola, Qing Ma, Gene D Morse. Evaluation of CYP2D6 phenotype in the Yoruba Nigerian population.
Expert review of clinical pharmacology.
2017 Oct; 10(10):1145-1152. doi:
10.1080/17512433.2017.1362979
. [PMID: 28786716] - Laura Rabinovich-Guilatt, Lilach Steiner, Hussein Hallak, Gina Pastino, Pierandrea Muglia, Ofer Spiegelstein. Metoprolol-pridopidine drug-drug interaction and food effect assessments of pridopidine, a new drug for treatment of Huntington's disease.
British journal of clinical pharmacology.
2017 Oct; 83(10):2214-2224. doi:
10.1111/bcp.13317
. [PMID: 28449367] - Bridgette Martinak, Ramy A Bolis, Jeffrey Ryne Black, Rachel E Fargason, Badari Birur. Dextromethorphan in Cough Syrup: The Poor Man's Psychosis.
Psychopharmacology bulletin.
2017 09; 47(4):59-63. doi:
NULL
. [PMID: 28936010] - Der-Yuan Chen, Chi-Chien Lin, Yi-Ming Chen, Ya-Hsuan Chao, Deng-Ho Yang. Dextromethorphan Exhibits Anti-inflammatory and Immunomodulatory Effects in a Murine Model of Collagen-Induced Arthritis and in Human Rheumatoid Arthritis.
Scientific reports.
2017 09; 7(1):11353. doi:
10.1038/s41598-017-11378-8
. [PMID: 28900117] - Jeffrey E Edwards, Lise Eliot, Andrew Parkinson, Sharon Karan, Leigh MacConell. Assessment of Pharmacokinetic Interactions Between Obeticholic Acid and Caffeine, Midazolam, Warfarin, Dextromethorphan, Omeprazole, Rosuvastatin, and Digoxin in Phase 1 Studies in Healthy Subjects.
Advances in therapy.
2017 09; 34(9):2120-2138. doi:
10.1007/s12325-017-0601-0
. [PMID: 28808886] - Kevin Kai-Ting Po, Joseph Wai-Hin Leung, Jackie Ngai-Man Chan, Timothy Kai-Hang Fung, Dalinda Isabel Sánchez-Vidaña, Emily Lok-Lam Sin, Kwok-Fai So, Benson Wui-Man Lau, Andrew Man-Hong Siu. Protective effect of Lycium Barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression.
Brain research bulletin.
2017 Sep; 134(?):10-17. doi:
10.1016/j.brainresbull.2017.06.014
. [PMID: 28645861] - Luc R A Rougée, Michael A Mohutsky, David W Bedwell, Kenneth J Ruterbories, Stephen D Hall. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates.
Drug metabolism and disposition: the biological fate of chemicals.
2017 09; 45(9):1008-1018. doi:
10.1124/dmd.117.076331
. [PMID: 28679672] - Carley R Corado, Daniel S McKemie, Heather K Knych. Pharmacokinetics of dextromethorphan and its metabolites in horses following a single oral administration.
Drug testing and analysis.
2017 Jun; 9(6):880-887. doi:
10.1002/dta.2060
. [PMID: 27580591] - Nan Hu, Yanjuan Huang, Xuejiao Gao, Sai Li, Zhixiang Yan, Bin Wei, Ru Yan. Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine.
Chemico-biological interactions.
2017 Jun; 271(?):48-58. doi:
10.1016/j.cbi.2017.04.018
. [PMID: 28438436] - Sara Armani, Lillian Ting, Nicholas Sauter, Christelle Darstein, Anadya Prakash Tripathi, Lai Wang, Bing Zhu, Helen Gu, Dung Yu Chun, Heidi J Einolf, Swarupa Kulkarni. Drug Interaction Potential of Osilodrostat (LCI699) Based on Its Effect on the Pharmacokinetics of Probe Drugs of Cytochrome P450 Enzymes in Healthy Adults.
Clinical drug investigation.
2017 May; 37(5):465-472. doi:
10.1007/s40261-017-0497-0
. [PMID: 28155129] - Andrea Gaedigk, Greyson P Twist, Emily G Farrow, Jennifer A Lowry, Sarah E Soden, Neil A Miller. In vivo characterization of CYP2D6*12, *29 and *84 using dextromethorphan as a probe drug: a case report.
Pharmacogenomics.
2017 Apr; 18(5):427-431. doi:
10.2217/pgs-2016-0192
. [PMID: 28290770] - Jia-Lin Wu, Wei-Yuan Tsai, Jian-Horng Chen, Chih-Shung Wong. Dextromethorphan upregulates osteoblast and osteoclast activity but does not attenuate ovariectomy-induced osteoporosis.
Life sciences.
2017 Mar; 173(?):145-149. doi:
10.1016/j.lfs.2017.01.011
. [PMID: 28153746] - Shihui Bao, Jing Zhang, Zixia Lin, Ke Su, Jingjing Mo, Lin Hong, Shuyi Qian, Lianguo Chen, Fa Sun, Congcong Wen, Qing Wu, Lufeng Hu, Guanyang Lin, Xianqin Wang. Serum metabolic changes in rats after intragastric administration of dextromethorphan.
Biomedical chromatography : BMC.
2017 Mar; 31(3):. doi:
10.1002/bmc.3814
. [PMID: 27528536] - Sheng-Yu Lee, Shiou-Lan Chen, Tzu-Yun Wang, Yun-Hsuan Chang, Po See Chen, San-Yuan Huang, Nian-Sheng Tzeng, Liang-Jen Wang, I Hui Lee, Kao Ching Chen, Yen Kuang Yang, Ru-Band Lu. The COMT Val158Met Polymorphism Is Associated With Response to Add-on Dextromethorphan Treatment in Bipolar Disorder.
Journal of clinical psychopharmacology.
2017 Feb; 37(1):94-98. doi:
10.1097/jcp.0000000000000633
. [PMID: 27930497] - Shu-fen He, Wen-zheng Ju, Hao-bin Hu, Li-jing Zhu, Qian Zhang, Guo-liang Dai. [Change of hepatic drug metabolism enzymes in rat depression model with kidney-yang deficiency].
Yao xue xue bao = Acta pharmaceutica Sinica.
2017 Feb; 52(2):258-63. doi:
. [PMID: 29979512]
- Kiyoshi Fukuhara, Akiko Ohno, Ruri Kikura-Hanajiri. A Metabolic Study on the Biochemical Effects of Chiral Illegal Drugs in Rats Using 1H-NMR Spectroscopy.
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2017; 137(9):1147-1154. doi:
10.1248/yakushi.17-00046
. [PMID: 28867701] - Ricardo P Garay, George T Grossberg. AVP-786 for the treatment of agitation in dementia of the Alzheimer's type.
Expert opinion on investigational drugs.
2017 Jan; 26(1):121-132. doi:
10.1080/13543784.2017.1267726
. [PMID: 27936965] - Lin-Hu Ye, Ling-Ti Kong, Ming-Zhu Yan, Fang-Rui Cao, Li-Sha Wang, Yong-Hong Liao, Rui-Le Pan, Qi Chang. Lotus leaf alkaloid fraction can strongly inhibit CYP2D6 isoenzyme activity.
Journal of ethnopharmacology.
2016 Dec; 194(?):913-917. doi:
10.1016/j.jep.2016.10.055
. [PMID: 27771456] - Sheng-Yu Lee, Tzu-Yun Wang, Shiou-Lan Chen, Yun-Hsuan Chang, Po-See Chen, San-Yuan Huang, Nian-Sheng Tzeng, Liang-Jen Wang, I Hui Lee, Kao Chin Chen, Yen Kuang Yang, Yi-Hsin Yang, Ru-Band Lu, Cheng-Sheng Chen. The correlation between plasma brain-derived neurotrophic factor and cognitive function in bipolar disorder is modulated by the BDNF Val66Met polymorphism.
Scientific reports.
2016 12; 6(?):37950. doi:
10.1038/srep37950
. [PMID: 27905499] - T M Dodgen, C De J Labuschagne, A van Schalkwyk, F E Steffens, A Gaedigk, A D Cromarty, M Alessandrini, M S Pepper. Pharmacogenetic comparison of CYP2D6 predictive and measured phenotypes in a South African cohort.
The pharmacogenomics journal.
2016 11; 16(6):566-572. doi:
10.1038/tpj.2015.76
. [PMID: 26503815] - Paulo Magalhães, Fernando De Andrés, Amílcar Falcão, Adrián LLerena, Gilberto Alves. Can the CEIBA Cocktail Designed for Human Cytochrome P450 Enzymes be Used in the Rat for Drug Interaction Studies?.
Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.
2016 Oct; 19(4):520-529. doi:
10.18433/j3d313
. [PMID: 28057170] - Rachumallu Ramakrishna, Manisha Bhateria, Rajbir Singh, Rabi Sankar Bhatta. Evaluation of the impact of 16-dehydropregnenolone on the activity and expression of rat hepatic cytochrome P450 enzymes.
The Journal of steroid biochemistry and molecular biology.
2016 10; 163(?):183-92. doi:
10.1016/j.jsbmb.2016.05.018
. [PMID: 27224941] - Rui Chen, Amin Rostami-Hodjegan, Haotian Wang, David Berk, Jun Shi, Pei Hu. Application of a physiologically based pharmacokinetic model for the evaluation of single-point plasma phenotyping method of CYP2D6.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2016 Sep; 92(?):131-6. doi:
10.1016/j.ejps.2016.07.001
. [PMID: 27412587] - Carley R Corado, Daniel S McKemie, Heather K Knych. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.
American journal of veterinary research.
2016 Sep; 77(9):1029-35. doi:
10.2460/ajvr.77.9.1029
. [PMID: 27580115] - Charles P Taylor, Stephen F Traynelis, Joao Siffert, Laura E Pope, Rae R Matsumoto. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use.
Pharmacology & therapeutics.
2016 08; 164(?):170-82. doi:
10.1016/j.pharmthera.2016.04.010
. [PMID: 27139517] - Tzu-Yun Wang, Sheng-Yu Lee, Shiou-Lan Chen, Yun-Hsuan Chang, Liang-Jen Wang, Po See Chen, Shih-Heng Chen, Chun-Hsien Chu, San-Yuan Huang, Nian-Sheng Tzeng, Chia-Ling Li, Yi-Lun Chung, Tsai-Hsin Hsieh, I Hui Lee, Kao Chin Chen, Yen Kuang Yang, Jau-Shyong Hong, Ru-Band Lu. Comparing clinical responses and the biomarkers of BDNF and cytokines between subthreshold bipolar disorder and bipolar II disorder.
Scientific reports.
2016 06; 6(?):27431. doi:
10.1038/srep27431
. [PMID: 27270858] - Furong Qiu, Songcan Liu, Ping Miao, Jin Zeng, Leilei Zhu, TongFang Zhao, Yujie Ye, Jian Jiang. Effects of the Chinese herbal formula 'Zuojin Pill' on the pharmacokinetics of dextromethorphan in healthy Chinese volunteers with CYP2D6*10 genotype.
European journal of clinical pharmacology.
2016 Jun; 72(6):689-95. doi:
10.1007/s00228-016-2048-7
. [PMID: 27023460] - Silvia Vogl, Matthias Steinfath, Werner K Lutz, Gilbert Schönfelder. Effect of Omeprazole and Dextromethorphan on the Urinary Metabolic Ratio of Flurbiprofen.
Basic & clinical pharmacology & toxicology.
2016 Jun; 118(6):496-8. doi:
10.1111/bcpt.12536
. [PMID: 26617075] - Amar K Durgannavar, Manjanath B Patgar, Sharanappa T Nandibewoor, Shivamurti A Chimatadar. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.
Luminescence : the journal of biological and chemical luminescence.
2016 May; 31(3):843-50. doi:
10.1002/bio.3040
. [PMID: 26387777] - Rui Chen, Haotian Wang, Jun Shi, Pei Hu. Alternative methods for CYP2D6 phenotyping: comparison of dextromethorphan metabolic ratios from AUC, single point plasma, and urine.
International journal of clinical pharmacology and therapeutics.
2016 May; 54(5):330-6. doi:
10.5414/cp202387
. [PMID: 26902503] - Muhammad Farooq, Edward J Kelly, Jashvant D Unadkat. CYP2D6 Is Inducible by Endogenous and Exogenous Corticosteroids.
Drug metabolism and disposition: the biological fate of chemicals.
2016 May; 44(5):750-7. doi:
10.1124/dmd.115.069229
. [PMID: 26965986] - Na Zhang. Letter to the editor regarding 'Development and validation of a sensitive UHPLC-MS/MS method for simultaneous analysis of tramadol, dextromethorphan chlorpheniramine and their major metabolites in human plasma in forensic context: application to pharmacokinetics'.
Biomedical chromatography : BMC.
2016 Apr; 30(4):663-4. doi:
10.1002/bmc.3603
. [PMID: 26332009] - Wei-Hsian Yin, Pei Chen, Hung-I Yeh, Kuo-Yang Wang, Yi-Jen Hung, Wei-Kung Tseng, Ming-Shien Wen, Tao-Cheng Wu, Chau-Chung Wu, Shu-Meng Cheng, Jaw-Wen Chen. Combination With Low-dose Dextromethorphan Improves the Effect of Amlodipine Monotherapy in Clinical Hypertension: A First-in-human, Concept-proven, Prospective, Dose-escalation, Multicenter Study.
Medicine.
2016 Mar; 95(12):e3234. doi:
10.1097/md.0000000000003234
. [PMID: 27015224] - Kendra J Bjoraker, Michael A Swanson, Curtis R Coughlin, John Christodoulou, Ee S Tan, Mark Fergeson, Sarah Dyack, Ayesha Ahmad, Marisa W Friederich, Elaine B Spector, Geralyn Creadon-Swindell, M Antoinette Hodge, Sommer Gaughan, Casey Burns, Johan L K Van Hove. Neurodevelopmental Outcome and Treatment Efficacy of Benzoate and Dextromethorphan in Siblings with Attenuated Nonketotic Hyperglycinemia.
The Journal of pediatrics.
2016 Mar; 170(?):234-9. doi:
10.1016/j.jpeds.2015.12.027
. [PMID: 26749113] - Jie Cai, Da-Peng Dai, Pei-Wu Geng, Shuang-Hu Wang, Hao Wang, Yun-Yun Zhan, Xiang-Xin Huang, Guo-Xin Hu, Jian-Ping Cai. Effects of 22 Novel CYP2D6 Variants Found in the Chinese Population on the Bufuralol and Dextromethorphan Metabolisms In Vitro.
Basic & clinical pharmacology & toxicology.
2016 Mar; 118(3):190-9. doi:
10.1111/bcpt.12478
. [PMID: 26310775] - Ole Kristian Thu, Olav Spigset, Odd Georg Nilsen, Bent Hellum. Effect of commercial Rhodiola rosea on CYP enzyme activity in humans.
European journal of clinical pharmacology.
2016 Mar; 72(3):295-300. doi:
10.1007/s00228-015-1988-7
. [PMID: 26613955] - Fernando de Andrés, Santiago Terán, Marcela Bovera, Humberto Fariñas, Enrique Terán, Adrián LLerena. Multiplex Phenotyping for Systems Medicine: A One-Point Optimized Practical Sampling Strategy for Simultaneous Estimation of CYP1A2, CYP2C9, CYP2C19, and CYP2D6 Activities Using a Cocktail Approach.
Omics : a journal of integrative biology.
2016 Feb; 20(2):88-96. doi:
10.1089/omi.2015.0131
. [PMID: 26600202] - J Marquard, A Stirban, F Schliess, F Sievers, A Welters, S Otter, A Fischer, S Wnendt, T Meissner, T Heise, E Lammert. Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial.
Diabetes, obesity & metabolism.
2016 Jan; 18(1):100-3. doi:
10.1111/dom.12576
. [PMID: 26362564] - Ewelina Kwiecień-Obara, Jaroslaw Szponar, Anna Krajewska, Agnieszka Witkowska, Anna Radoniewicz, Magda Szponar. [Morphine (obtained from poppy seeds) and dextrometorfan poisoning– a case report].
Przeglad lekarski.
2016 ; 73(8):596-8. doi:
. [PMID: 29677437]
- Hiromi Soraoka, Kentaro Oniki, Kazuki Matsuda, Tatsumasa Ono, Kosuke Taharazako, Yoshihiro Uchiyashiki, Ryoko Kamihashi, Ayana Kita, Ayaka Takashima, Kazuko Nakagawa, Norio Yasui-Furukori, Daisuke Kadowaki, Keishi Miyata, Junji Saruwatari. The Effect of Yokukansan, a Traditional Herbal Preparation Used for the Behavioral and Psychological Symptoms of Dementia, on the Drug-Metabolizing Enzyme Activities in Healthy Male Volunteers.
Biological & pharmaceutical bulletin.
2016; 39(9):1468-74. doi:
10.1248/bpb.b16-00248
. [PMID: 27582327] - F L Opdam, A S Modak, S P Mooijaart, M Louwerens, M W M de Waal, H Gelderblom, H-J Guchelaar. CYP2D6 Metabolism in Frail Elderly Compared to Non-Frail Elderly: A Pilot Feasibility Study.
Drugs & aging.
2015 Dec; 32(12):1019-27. doi:
10.1007/s40266-015-0319-0
. [PMID: 26597400] - Worku Bedada, Fernando de Andrés, Ephrem Engidawork, Anton Pohanka, Olof Beck, Leif Bertilsson, Adrián Llerena, Eleni Aklillu. The Psychostimulant Khat (Catha edulis) Inhibits CYP2D6 Enzyme Activity in Humans.
Journal of clinical psychopharmacology.
2015 Dec; 35(6):694-9. doi:
10.1097/jcp.0000000000000413
. [PMID: 26444948] - Pao-Pao Yang, Geng-Chang Yeh, Eagle Yi-Kung Huang, Ping-Yee Law, Horace H Loh, Pao-Luh Tao. Effects of dextromethorphan and oxycodone on treatment of neuropathic pain in mice.
Journal of biomedical science.
2015 Sep; 22(?):81. doi:
10.1186/s12929-015-0186-3
. [PMID: 26391752] - Eman H El-Naby, Ayman H Kamel. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.
Materials science & engineering. C, Materials for biological applications.
2015 Sep; 54(?):217-24. doi:
10.1016/j.msec.2015.05.044
. [PMID: 26046285] - Naomi Finn, John Wolf, June Louie, Bing Su. High concentrations of dextromethorphan result in false-positive in opiate immunoassay test.
Clinica chimica acta; international journal of clinical chemistry.
2015 Aug; 448(?):247. doi:
10.1016/j.cca.2015.07.015
. [PMID: 26192219] - Hala M Heneedak, Ismail Salama, Samia Mostafa, Ehab El-Kady, Mohamed El-Sadek. Development and validation of a sensitive UHPLC-MS/MS method for the simultaneous analysis of tramadol, dextromethorphan chlorpheniramine and their major metabolites in human plasma in forensic context: application to pharmacokinetics.
Biomedical chromatography : BMC.
2015 Jul; 29(7):998-1007. doi:
10.1002/bmc.3384
. [PMID: 25417559] - James Ermer, Mary Corcoran, Patrick Martin. Lisdexamfetamine Dimesylate Effects on the Pharmacokinetics of Cytochrome P450 Substrates in Healthy Adults in an Open-Label, Randomized, Crossover Study.
Drugs in R&D.
2015 Jun; 15(2):175-85. doi:
10.1007/s40268-015-0090-z
. [PMID: 25862215] - Jianguo Sun, Ying Peng, Hui Wu, Xueyuan Zhang, Yunxi Zhong, Yanan Xiao, Fengyi Zhang, Huanhuan Qi, Lili Shang, Jianping Zhu, Yue Sun, Ke Liu, Jinghan Liu, Jiye A, Rodney J Y Ho, Guangji Wang. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.
Drug metabolism and disposition: the biological fate of chemicals.
2015 May; 43(5):713-24. doi:
10.1124/dmd.114.060905
. [PMID: 25681130] - Jing-ya Chen, Jun-jun Wang, Mo-ran Meng, Yong Chen. [Borneol is an inducer of rat hepatic CYP2D activity in vivo].
Yao xue xue bao = Acta pharmaceutica Sinica.
2015 Apr; 50(4):459-63. doi:
"
. [PMID: 26223128] - Yu-xin Zang, Bing-ting Sun, Wen-zhu Zhao, Na Rong, Guo-liang Dai, Wen-zheng Ju, Heng-shan Tan. [Study of change in activity of hepatic drug metabolism enzymes in rat model of chronic unpredictable mild stress].
Yao xue xue bao = Acta pharmaceutica Sinica.
2015 Mar; 50(3):319-25. doi:
. [PMID: 26118111]
- Fahad Ibrahim Al-Jenoobi, Areej A Al-Thukair, Mohd Aftab Alam, Fawkeya A Abbas, Abdullah M Al-Mohizea, Khalid M Alkharfy, Saleh A Al-Suwayeh. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.
European journal of drug metabolism and pharmacokinetics.
2015 Mar; 40(1):61-6. doi:
10.1007/s13318-014-0180-2
. [PMID: 24510399] - Sheng-Yu Lee, Shiou-Lan Chen, Yun-Hsuan Chang, Chun-Hsien Chu, Shih-Heng Chen, Po See Chen, San-Yuan Huang, Nian-Sheng Tzeng, Liang-Jen Wang, I Hui Lee, Tzu-Yun Wang, Kao Chin Chen, Yen Kuang Yang, Jau-Shyong Hong, Ru-Band Lu. A placebo-controlled trial of dextromethorphan as an adjunct in opioid-dependent patients undergoing methadone maintenance treatment.
The international journal of neuropsychopharmacology.
2015 Feb; 18(7):pyv008. doi:
10.1093/ijnp/pyv008
. [PMID: 25716777] - Satomi Shida, Masahiro Utoh, Norie Murayama, Makiko Shimizu, Yasuhiro Uno, Hiroshi Yamazaki. Human plasma concentrations of cytochrome P450 probes extrapolated from pharmacokinetics in cynomolgus monkeys using physiologically based pharmacokinetic modeling.
Xenobiotica; the fate of foreign compounds in biological systems.
2015; 45(10):881-6. doi:
10.3109/00498254.2015.1028511
. [PMID: 26075833] - Fahad I Al-Jenoobi, Areej A Al-Thukair, Mohd Aftab Alam, Fawkeya A Abbas, Abdullah M Al-Mohizea, Khalid M Alkharfy, Saleh A Al-Suwayeh. Effect of Trigonella foenum-graecum L. on Metabolic Activity of CYP2D6 and CYP3A4.
Forschende Komplementarmedizin (2006).
2015; 22(3):180-4. doi:
10.1159/000432412
. [PMID: 26335391]