Daidzein (BioDeep_00000001454)
Secondary id: BioDeep_00000270070, BioDeep_00000859617
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Antitumor activity BioNovoGene_Lab2019
代谢物信息卡片
化学式: C15H10O4 (254.0579)
中文名称: 大豆苷元, 黄豆苷元, 大豆素, 大豆异黄酮
谱图信息:
最多检出来源 Homo sapiens(feces) 23.93%
Last reviewed on 2024-10-31.
Cite this Page
Daidzein. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/daidzein (retrieved
2024-12-12) (BioDeep RN: BioDeep_00000001454). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(ccc2c(c1)occ(c2=O)c1ccc(cc1)O)O
InChI: InChI=1/C15H10O4/c16-10-3-1-9(2-4-10)13-8-19-14-7-11(17)5-6-12(14)15(13)18/h1-8,16-17H
描述信息
Daidzein is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. It has a role as an antineoplastic agent, a phytoestrogen, a plant metabolite, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is a conjugate acid of a daidzein(1-).
Daidzein is a natural product found in Pericopsis elata, Thermopsis lanceolata, and other organisms with data available.
Daidzein is an isoflavone extract from soy, which is an inactive analog of the tyrosine kinase inhibitor genistein. It has antioxidant and phytoestrogenic properties. (NCI)
Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (A3191, A3189).
See also: Trifolium pratense flower (part of).
Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (PMID:18045128, 17579894). Daidzein is a biomarker for the consumption of soy beans and other soy products.
Widespread isoflavone in the Leguminosae, especies Phaseolus subspecies (broad beans, lima beans); also found in soy and soy products (tofu, miso), chick peas (Cicer arietinum) and peanuts (Arachis hypogaea). Nutriceutical with anticancer and bone protective props.
A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4.
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4894; ORIGINAL_PRECURSOR_SCAN_NO 4890
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3572
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4855
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4898; ORIGINAL_PRECURSOR_SCAN_NO 4894
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4884; ORIGINAL_PRECURSOR_SCAN_NO 4881
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4847
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952
CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913
CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk)
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2315
IPB_RECORD: 1801; CONFIDENCE confident structure
IPB_RECORD: 421; CONFIDENCE confident structure
CONFIDENCE standard compound; INTERNAL_ID 8828
CONFIDENCE standard compound; INTERNAL_ID 2874
CONFIDENCE standard compound; INTERNAL_ID 4239
CONFIDENCE standard compound; INTERNAL_ID 4163
CONFIDENCE standard compound; INTERNAL_ID 181
Daidzein is a soy isoflavone, which acts as a PPAR activator.
Daidzein is a soy isoflavone, which acts as a PPAR activator.
Daidzein is a soy isoflavone, which acts as a PPAR activator.
同义名列表
76 个代谢物同义名
Daidzein, Pharmaceutical Secondary Standard; Certified Reference Material; Daidzein, United States Pharmacopeia (USP) Reference Standard; 4H-1-Benzopyran-4-one, 7-hydroxy-3-(4-hydroxyphenyl)-; 7-Hydroxy-3-(4-hydroxyphenyl)-4H-1- benzopyran-4-one; Daidzein, primary pharmaceutical reference standard; 7-Hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; DAIDZEIN (CONSTITUENT OF SOY ISOFLAVONES) [DSC]; 7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one; 7-Hydroxy-3-(4-hydroxy-phenyl)-chromen-4-one; 5-18-04-00089 (Beilstein Handbook Reference); 7-hydroxy-3-(4-hydroxyphenyl)-chromen-4-one; 7-Hydroxy-3-(4-hydroxyphenyl)-4-benzopyrone; DAIDZEIN (CONSTITUENT OF ASTRAGALUS) [DSC]; 7-hydroxy-3-(4-hydroxyphenyl)chromen-4-one; DAIDZEIN (CONSTITUENT OF RED CLOVER) [DSC]; DAIDZEIN (CONSTITUENT OF SOY ISOFLAVONES); 7-Hydroxy-3-(4-hydroxy-phenyl)-chromone; 80E3ED75-D852-4D97-9BD6-B5ADE7EA25A1; DAIDZEIN (CONSTITUENT OF ASTRAGALUS); DAIDZEIN (CONSTITUENT OF RED CLOVER); Daidzein (4,7-Dihydroxyisoflavone); 7-hydroxy-3-(4-hydroxyphenyl)-4H-; Daidzein, purum, >=98.0\\% (TLC); d-(+)-alpha-methylbenzyl amine; d-(+)-alpha-methylbenzylamine; Daidzein, analytical standard; 7,4-Dihydroxy-isoflavone (3a); Daidzein, >=98\\%, synthetic; Isoflavone, 4,7-dihydroxy-; 4,7-Dihydroxy-iso-flavone; 4,7-dihydroxy isoflavone; 4,7-dihydroxy-Isoflavone; 7,4-Dihydroxyisoflavone; 4,7-Dihydroxyisoflavone; Daidzein (Standard); DAIDZEIN [USP-RS]; Daidzein-3,5,8-d3; DAIDZEIN (USP-RS); DAIDZEIN [WHO-DD]; Spectrum5_000857; BiomolKI2_000066; DAIDZEIN [MART.]; Spectrum2_000053; DAIDZEIN (MART.); Spectrum4_001964; Spectrum3_000191; DAIDZEIN [INCI]; Daidzein (DAI); Oprea1_305345; DAIDZEIN [MI]; Oprea1_182317; DivK1c_001023; Isoaurostatin; Lopac0_000412; MEGxm0_000123; KBio2_003303; KBio3_001241; Daidzein,(S); KBio2_000735; Tox21_201444; KBio1_001023; Tox21_303650; ACon1_000543; ACon0_001477; Tox21_500412; KBio2_005871; SMP1_000089; IDI1_001023; BMK1-F12; Daidzeol; diadzein; Daidzein; C15H10O4; ZF1; 4 7-dihydroxyisoflavone; Daidzein
数据库引用编号
114 个数据库交叉引用编号
- ChEBI: CHEBI:28197
- KEGG: C10208
- PubChem: 5281708
- HMDB: HMDB0003312
- Metlin: METLIN43572
- DrugBank: DB13182
- ChEMBL: CHEMBL8145
- Wikipedia: Daidzein
- LipidMAPS: LMPK12050038
- MeSH: daidzein
- ChemIDplus: 0000486668
- MetaCyc: DAIDZEIN
- KNApSAcK: C00009380
- foodb: FDB002608
- chemspider: 4445025
- CAS: 486-66-8
- MoNA: UF416351
- MoNA: LU093751
- MoNA: UF416354
- MoNA: NA003264
- MoNA: UF423904
- MoNA: LU093756
- MoNA: UF423902
- MoNA: PB000842
- MoNA: NA002890
- MoNA: UF423954
- MoNA: NA003265
- MoNA: PR040007
- MoNA: PB002428
- MoNA: LU093703
- MoNA: NA002500
- MoNA: LU093705
- MoNA: RP018111
- MoNA: PR040010
- MoNA: UF416304
- MoNA: UF416303
- MoNA: PR100638
- MoNA: NA003638
- MoNA: LU093755
- MoNA: PB002426
- MoNA: LU093753
- MoNA: NA003635
- MoNA: NA002889
- MoNA: PS039704
- MoNA: NA000035
- MoNA: UF423953
- MoNA: NA002497
- MoNA: PS039701
- MoNA: NA003267
- MoNA: NA003636
- MoNA: UF416352
- MoNA: NA000032
- MoNA: PR040009
- MoNA: RP018102
- MoNA: PB000821
- MoNA: NA002891
- MoNA: NA002893
- MoNA: PB002425
- MoNA: AU287405
- MoNA: PR040008
- MoNA: NA002499
- MoNA: NA002892
- MoNA: RP018103
- MoNA: UF416301
- MoNA: LU093701
- MoNA: NA002498
- MoNA: UF423901
- MoNA: AU287404
- MoNA: PB002427
- MoNA: NA000031
- MoNA: UF423952
- MoNA: UF416302
- MoNA: PR100225
- MoNA: PS039702
- MoNA: LU093704
- MoNA: NA000034
- MoNA: PS039703
- MoNA: NA003268
- MoNA: RP018113
- MoNA: PB000861
- MoNA: AU287402
- MoNA: SM882802
- MoNA: UF423951
- MoNA: AU287401
- MoNA: LU093702
- MoNA: LU093706
- MoNA: UF423903
- MoNA: PB000841
- MoNA: RP018112
- MoNA: UF416353
- MoNA: LU093754
- MoNA: NA002496
- MoNA: AU287403
- MoNA: AU287406
- MoNA: PR020020
- MoNA: NA003637
- MoNA: NA003634
- MoNA: LU093752
- MoNA: RP018101
- MoNA: NA000033
- MoNA: NA003266
- MoNA: SM882851
- MoNA: PR100637
- medchemexpress: HY-N0019
- PMhub: MS000000559
- MetaboLights: MTBLC28197
- PubChem: 12394
- PDB-CCD: ZF1
- 3DMET: B01122
- NIKKAJI: J6.014C
- RefMet: Daidzein
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-687
- KNApSAcK: 28197
- LOTUS: LTS0130369
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(6)
代谢反应
54 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(8)
- daidzein conjugates interconversion:
H2O + daidzin ⟶ D-glucopyranose + daidzein
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- (-)-glycinol biosynthesis:
(6aR,11aR)-3,9-dihydroxypterocarpan + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (-)-glycinol + H2O + an oxidized [NADPH-hemoprotein reductase]
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- coumestrol biosynthesis:
H+ + NADPH + daidzein ⟶ (S)-dihydrodaidzein + NADP+
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of pterocarpan biosynthesis (via daidzein):
(-)-glycinol + DMAPP ⟶ (6αS,11αS)-2-dimethylallyl-3,6α,9-trihydroxypterocarpan + diphosphate
- daidzin and daidzein degradation:
(3R,4S)-tetrahydrodaidzein + A(H2) ⟶ (S)-equol + A + H2O
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Pterocarpan biosynthesis:
2-hydroxyisoflavanone ⟶ H2O + daidzein
INOH(0)
PlantCyc(43)
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- superpathway of pterocarpan biosynthesis (via daidzein):
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of pterocarpan biosynthesis (via formononetin):
H+ + NADPH + O2 + calycosin ⟶ H2O + NADP+ + pseudobaptigenin
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- daidzein conjugates interconversion:
H2O + daidzin ⟶ D-glucopyranose + daidzein
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via daidzein):
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + calycosin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + pseudobaptigenin
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via daidzein):
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- formononetin biosynthesis:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of pterocarpan biosynthesis (via daidzein):
(6αS,11αS)-2-dimethylallyl-3,6α,9-trihydroxypterocarpan + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + glyceollin II
- (-)-glycinol biosynthesis:
(3R,4R)-7,2',4'-trihydroxyisoflavanol + NADP+ ⟶ (3R)-2'-hydroxydihydrodaidzein + H+ + NADPH
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- coumestrol biosynthesis:
(S)-dihydrodaidzein + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3R)-2'-hydroxydihydrodaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- daidzein conjugates interconversion:
daidzin + malonyl-CoA ⟶ coenzyme A + malonyldaidzin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + calycosin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + pseudobaptigenin
- formononetin biosynthesis:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- daidzein conjugates interconversion:
H2O + malonyldaidzin ⟶ H+ + daidzin + malonate
- superpathway of pterocarpan biosynthesis (via daidzein):
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- superpathway of pterocarpan biosynthesis (via formononetin):
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + calycosin
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- formononetin biosynthesis:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- (-)-glycinol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + daidzein ⟶ 2'-hydroxydaidzein + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- (-)-glycinol biosynthesis:
(3R)-2'-hydroxydihydrodaidzein + NADP+ ⟶ 2'-hydroxydaidzein + H+ + NADPH
- formononetin biosynthesis:
SAM + daidzein ⟶ H+ + SAH + formononetin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
407 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0130369
- 3812 - Albizia: LTS0130369
- 3813 - Albizia julibrissin: 10.1007/BF02980155
- 3813 - Albizia julibrissin: LTS0130369
- 111850 - Ammopiptanthus: LTS0130369
- 126911 - Ammopiptanthus mongolicus: 10.1002/HLCA.200890108
- 126911 - Ammopiptanthus mongolicus: LTS0130369
- 48128 - Andira: LTS0130369
- 53825 - Andira inermis: 10.1007/BF00564927
- 53825 - Andira inermis: LTS0130369
- 7460 - Apis mellifera ligustica: -
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 3817 - Arachis: LTS0130369
- 3818 - Arachis hypogaea:
- 3818 - Arachis hypogaea: 10.1021/JF062148T
- 3818 - Arachis hypogaea: 10.1111/J.1365-3059.1995.TB01679.X
- 3818 - Arachis hypogaea: LTS0130369
- 4890 - Ascomycota: LTS0130369
- 20400 - Astragalus: LTS0130369
- 2014735 - Astragalus verrucosus: 10.1016/S0367-326X(02)00087-4
- 2014735 - Astragalus verrucosus: LTS0130369
- 2 - Bacteria: LTS0130369
- 5204 - Basidiomycota: LTS0130369
- 3681 - Begonia: LTS0130369
- 78253 - Begonia nantoensis:
- 78253 - Begonia nantoensis: 10.1002/CHIN.200434239
- 78253 - Begonia nantoensis: 10.1248/CPB.52.345
- 78253 - Begonia nantoensis: LTS0130369
- 3680 - Begoniaceae: LTS0130369
- 53835 - Bituminaria: LTS0130369
- 12979 - Butea: LTS0130369
- 56060 - Butea monosperma: 10.1016/J.BMCL.2008.12.064
- 56060 - Butea monosperma: LTS0130369
- 480422 - Butea superba: 10.3987/COM-05-10350
- 49803 - Chamaecytisus: LTS0130369
- 2816358 - Chesniella: LTS0130369
- 3826 - Cicer: 10.1007/BF00629810
- 3826 - Cicer: LTS0130369
- 3827 - Cicer arietinum:
- 3827 - Cicer arietinum: 10.1002/JPS.2600640504
- 3827 - Cicer arietinum: 10.1007/BF00629810
- 3827 - Cicer arietinum: 10.1016/S0021-9673(01)96392-7
- 3827 - Cicer arietinum: 10.1515/ZNC-1987-11-1206
- 3827 - Cicer arietinum: LTS0130369
- 242867 - Cicer flexuosum: 10.1007/BF00629810
- 242867 - Cicer flexuosum: LTS0130369
- 242872 - Cicer pungens: 10.1007/BF00629810
- 242872 - Cicer pungens: LTS0130369
- 242873 - Cicer songaricum: 10.1007/BF00629811
- 242873 - Cicer songaricum: LTS0130369
- 242877 - Cicer tragacanthoides: 10.1007/BF00629810
- 242877 - Cicer tragacanthoides: LTS0130369
- 38411 - Cladrastis: LTS0130369
- 247908 - Cladrastis platycarpa: 10.1021/NP50068A037
- 247908 - Cladrastis platycarpa: LTS0130369
- 539005 - Craspedolobium: LTS0130369
- 539006 - Craspedolobium schochii: 10.1016/S0367-326X(00)00218-5
- 539006 - Craspedolobium schochii: LTS0130369
- 1672627 - Craspedolobium unijugum: 10.1016/S0367-326X(00)00218-5
- 3828 - Crotalaria: LTS0130369
- 3830 - Crotalaria pallida: 10.1016/J.BMCL.2003.11.074
- 3830 - Crotalaria pallida: LTS0130369
- 109218 - Cullen: LTS0130369
- 429560 - Cullen corylifolium:
- 429560 - Cullen corylifolium: 10.1016/0031-9422(80)83035-4
- 429560 - Cullen corylifolium: 10.1021/NP030135T
- 429560 - Cullen corylifolium: 10.1021/NP970488Q
- 429560 - Cullen corylifolium: 10.1093/CHROMSCI/39.10.441
- 429560 - Cullen corylifolium: LTS0130369
- 3833 - Cytisus: LTS0130369
- 49804 - Cytisus austriacus: LTS0130369
- 1211454 - Cytisus hirsutus: 10.1021/NP50050A058
- 1211454 - Cytisus hirsutus: LTS0130369
- 53862 - Dalbergia: LTS0130369
- 450024 - Dalbergia ecastaphyllum: 10.1016/0031-9422(75)83053-6
- 450024 - Dalbergia ecastaphyllum: LTS0130369
- 450026 - Dalbergia frutescens: 10.1021/NP000010D
- 450026 - Dalbergia frutescens: LTS0130369
- 499988 - Dalbergia odorifera: 10.1016/J.BMCL.2013.04.032
- 499988 - Dalbergia odorifera: LTS0130369
- 53864 - Derris: LTS0130369
- 1225674 - Derris cuneifolia:
- 3841 - Erythrina: LTS0130369
- 3845 - Erythrina variegata:
- 3845 - Erythrina variegata: 10.1016/S0031-9422(96)00841-2
- 3845 - Erythrina variegata: 10.1021/NP990300Y
- 3845 - Erythrina variegata: LTS0130369
- 53878 - Euchresta: LTS0130369
- 256638 - Euchresta formosana: 10.1016/S0031-9422(02)00017-1
- 256638 - Euchresta formosana: LTS0130369
- 2759 - Eukaryota: LTS0130369
- 147545 - Eurotiomycetes: LTS0130369
- 3803 - Fabaceae: LTS0130369
- 4751 - Fungi: LTS0130369
- 49818 - Genista: LTS0130369
- 319660 - Genista corsica: 10.1021/NP990282K
- 319660 - Genista corsica: LTS0130369
- 147456 - Genista sessilifolia: 10.1007/S10600-009-9248-7
- 147456 - Genista sessilifolia: LTS0130369
- 3846 - Glycine:
- 3846 - Glycine: 10.1002/JSSC.200600289
- 3846 - Glycine: 10.1021/JF803870K
- 3846 - Glycine: 10.1207/S15327914NC5402_5
- 3846 - Glycine: LTS0130369
- 48924 - Glycine canescens: 10.1016/0305-1978(84)90033-4
- 48924 - Glycine canescens: LTS0130369
- 45687 - Glycine clandestina: 10.1016/0305-1978(84)90033-4
- 45687 - Glycine clandestina: LTS0130369
- 45690 - Glycine falcata: 10.1016/0305-1978(84)90033-4
- 45690 - Glycine falcata: LTS0130369
- 45691 - Glycine latifolia: 10.1016/0305-1978(84)90033-4
- 45691 - Glycine latifolia: LTS0130369
- 3847 - Glycine max:
- 3847 - Glycine max: 10.1002/PMIC.201700366
- 3847 - Glycine max: 10.1006/JFCA.2000.0948
- 3847 - Glycine max: 10.1007/BF00575726
- 3847 - Glycine max: 10.1016/0002-8223(94)91939-9
- 3847 - Glycine max: 10.1016/0031-9422(83)80013-2
- 3847 - Glycine max: 10.1016/0098-8472(85)90006-1
- 3847 - Glycine max: 10.1016/0098-8472(86)90054-7
- 3847 - Glycine max: 10.1016/0731-7085(95)01619-8
- 3847 - Glycine max: 10.1016/S0021-9673(01)87655-X
- 3847 - Glycine max: 10.1016/S0021-9673(97)00989-8
- 3847 - Glycine max: 10.1016/S0031-9422(00)82649-7
- 3847 - Glycine max: 10.1016/S0731-7085(00)00264-8
- 3847 - Glycine max: 10.1021/JF00035A027
- 3847 - Glycine max: 10.1021/JF00044A016
- 3847 - Glycine max: 10.1021/JF00044A017
- 3847 - Glycine max: 10.1021/JF00063A016
- 3847 - Glycine max: 10.1021/JF00110A035
- 3847 - Glycine max: 10.1021/JF00123A028
- 3847 - Glycine max: 10.1021/JF801905Y
- 3847 - Glycine max: 10.1021/NP010606G
- 3847 - Glycine max: 10.1021/NP980566P
- 3847 - Glycine max: 10.1080/00380768.1991.10415022
- 3847 - Glycine max: 10.1093/AJCN/68.6.1474S
- 3847 - Glycine max: 10.1093/AJCN/68.6.1480S
- 3847 - Glycine max: 10.1207/S15327914NC4802_5
- 3847 - Glycine max: 10.1248/CPB.33.3834
- 3847 - Glycine max: LTS0130369
- 44016 - Glycine tabacina: 10.1016/0305-1978(84)90033-4
- 44016 - Glycine tabacina: LTS0130369
- 44015 - Glycine tomentella: 10.1016/0305-1978(84)90033-4
- 44015 - Glycine tomentella: LTS0130369
- 46347 - Glycyrrhiza: LTS0130369
- 74613 - Glycyrrhiza uralensis: 10.1248/CPB.51.1095
- 74613 - Glycyrrhiza uralensis: LTS0130369
- 40458 - Hericiaceae: LTS0130369
- 40459 - Hericium: LTS0130369
- 91752 - Hericium erinaceus: 10.3390/MOLECULES23030560
- 91752 - Hericium erinaceus: LTS0130369
- 43219 - Herpotrichiellaceae: LTS0130369
- 9606 - Homo sapiens: -
- 53892 - Lespedeza: LTS0130369
- 556514 - Lespedeza bicolor: 10.1016/J.FITOTE.2003.07.012
- 556514 - Lespedeza bicolor: LTS0130369
- 701533 - Lespedeza cyrtobotrya: 10.1248/CPB.28.1172
- 701533 - Lespedeza cyrtobotrya: LTS0130369
- 3928 - Lythraceae: LTS0130369
- 37500 - Maackia: LTS0130369
- 37501 - Maackia amurensis:
- 37501 - Maackia amurensis: 10.1016/S0031-9422(00)97051-1
- 37501 - Maackia amurensis: 10.1016/S0367-326X(00)00129-5
- 37501 - Maackia amurensis: 10.1021/JF801227Q
- 37501 - Maackia amurensis: LTS0130369
- 256640 - Maackia amurensis subsp. buergeri: 10.1016/S0031-9422(00)97051-1
- 256640 - Maackia amurensis subsp. buergeri: LTS0130369
- 3398 - Magnoliopsida: LTS0130369
- 3877 - Medicago: LTS0130369
- 70968 - Medicago radiata: 10.1016/0305-1978(82)90048-5
- 70968 - Medicago radiata: LTS0130369
- 3879 - Medicago sativa: 10.1021/JF60116A026
- 3879 - Medicago sativa: LTS0130369
- 1873 - Micromonospora: 10.1080/14786410412331272040
- 1873 - Micromonospora: LTS0130369
- 28056 - Micromonosporaceae: LTS0130369
- 40336 - Mucuna: LTS0130369
- 3931 - Myrtaceae: LTS0130369
- 3881 - Onobrychis: LTS0130369
- 3021493 - Onobrychis ebenoides: LTS0130369
- 474995 - Ophiocordyceps: LTS0130369
- 72228 - Ophiocordyceps sinensis: 10.1021/NP100902F
- 72228 - Ophiocordyceps sinensis: LTS0130369
- 474942 - Ophiocordycipitaceae: LTS0130369
- 53907 - Ormosia: LTS0130369
- 705300 - Ormosia henryi: 10.1016/J.FITOTE.2011.10.007
- 705300 - Ormosia henryi: LTS0130369
- 20802 - Oxytropis: LTS0130369
- 1479707 - Oxytropis falcata: 10.1021/NP100339U
- 1479707 - Oxytropis falcata: LTS0130369
- 53916 - Pericopsis: 10.1039/P19760000186
- 53916 - Pericopsis: LTS0130369
- 1079081 - Pericopsis elata: 10.1039/P19760000186
- 1929974 - Pericopsis laxiflora: 10.1039/P19760000186
- 1929974 - Pericopsis laxiflora: LTS0130369
- 53917 - Pericopsis mooniana: 10.1039/P19760000186
- 53917 - Pericopsis mooniana: LTS0130369
- 3883 - Phaseolus: LTS0130369
- 3886 - Phaseolus coccineus: 10.1016/S0031-9422(00)80697-4
- 3886 - Phaseolus coccineus: LTS0130369
- 3884 - Phaseolus lunatus: 10.1016/S0031-9422(00)81280-7
- 3884 - Phaseolus lunatus: LTS0130369
- 3885 - Phaseolus vulgaris: 10.1016/0031-9422(80)85139-9
- 3885 - Phaseolus vulgaris: LTS0130369
- 5600 - Phialophora: LTS0130369
- 58019 - Pinopsida: LTS0130369
- 70605 - Piptanthus: LTS0130369
- 70606 - Piptanthus nepalensis: 10.1055/S-0028-1097625
- 70606 - Piptanthus nepalensis: LTS0130369
- 33090 - Plants: -
- 2816372 - Platyosprion platycarpum: 10.1021/NP50068A037
- 3362 - Podocarpaceae: LTS0130369
- 359570 - Podocytisus: LTS0130369
- 359571 - Podocytisus caramanicus: 10.1055/S-2007-990248
- 359571 - Podocytisus caramanicus: LTS0130369
- 3582 - Portulaca: LTS0130369
- 46147 - Portulaca oleracea: 10.1002/HLCA.201000250
- 46147 - Portulaca oleracea: LTS0130369
- 3581 - Portulacaceae: LTS0130369
- 3892 - Pueraria:
- 3892 - Pueraria: 10.1016/J.BBRC.2008.10.178
- 3892 - Pueraria: 10.1016/S0003-2670(01)01433-7
- 3892 - Pueraria: LTS0130369
- 480421 - Pueraria candollei: LTS0130369
- 861244 - Pueraria candollei var. mirifica:
- 861244 - Pueraria candollei var. mirifica: 10.1016/J.MATURITAS.2007.08.001
- 861244 - Pueraria candollei var. mirifica: 10.1016/J.MATURITAS.2008.01.002
- 861244 - Pueraria candollei var. mirifica: 10.1055/S-2000-8603
- 861244 - Pueraria candollei var. mirifica: 10.1271/BBB.70316
- 861244 - Pueraria candollei var. mirifica: LTS0130369
- 132459 - Pueraria montana: LTS0130369
- 3893 - Pueraria montana var. lobata: 10.1002/JCCS.200400210
- 3893 - Pueraria montana var. lobata: 10.1007/BF01374033
- 3893 - Pueraria montana var. lobata: 10.1016/0014-5793(90)80410-K
- 3893 - Pueraria montana var. lobata: 10.1016/S0021-9673(01)00996-7
- 3893 - Pueraria montana var. lobata: 10.1016/S0021-9673(97)01070-4
- 3893 - Pueraria montana var. lobata: 10.1016/S0031-9422(97)00723-1
- 3893 - Pueraria montana var. lobata: 10.1016/S0031-9422(98)00729-8
- 3893 - Pueraria montana var. lobata: 10.1021/NP5009416
- 3893 - Pueraria montana var. lobata: 10.1055/S-2001-11499
- 3893 - Pueraria montana var. lobata: 10.1055/S-2006-957534
- 3893 - Pueraria montana var. lobata: 10.1055/S-2006-962420
- 3893 - Pueraria montana var. lobata: 10.1073/PNAS.90.21.10008
- 3893 - Pueraria montana var. lobata: 10.1078/0176-1617-01145
- 3893 - Pueraria montana var. lobata: 10.1248/CPB.30.1496
- 3893 - Pueraria montana var. lobata: 10.1248/CPB.35.4846
- 3893 - Pueraria montana var. lobata: 10.1248/CPB.38.1942
- 3893 - Pueraria montana var. lobata: 10.1248/CPB.54.1315
- 3893 - Pueraria montana var. lobata: 10.1248/YAKUSHI1947.104.1_50
- 3893 - Pueraria montana var. lobata: 10.4268/CJCMM20102314
- 3893 - Pueraria montana var. lobata: 10.4327/JSNFS.44.123
- 3893 - Pueraria montana var. lobata: LTS0130369
- 174648 - Pueraria montana var. thomsonii: 10.1016/J.PHYTOCHEM.2010.08.015
- 174648 - Pueraria montana var. thomsonii: LTS0130369
- 457826 - Pueraria tuberosa:
- 457826 - Pueraria tuberosa: 10.1016/S0021-9673(01)95520-7
- 457826 - Pueraria tuberosa: 10.1055/S-2007-969658
- 457826 - Pueraria tuberosa: LTS0130369
- 22662 - Punica: LTS0130369
- 22663 - Punica granatum:
- 22663 - Punica granatum: 10.1016/S0021-9673(00)90278-4
- 22663 - Punica granatum: LTS0130369
- 49835 - Retama: LTS0130369
- 49837 - Retama raetam:
- 49837 - Retama raetam: 10.1021/NP50029A031
- 49837 - Retama raetam: 10.1055/S-0028-1097462
- 49837 - Retama raetam: LTS0130369
- 3745 - Rosaceae: LTS0130369
- 714503 - Sophora tonkinensis Gagnep.: -
- 23222 - Sorbus: LTS0130369
- 1770154 - Sorbus cuspidata: 10.1016/J.PHYTOCHEM.2010.08.015
- 1770154 - Sorbus cuspidata: LTS0130369
- 147550 - Sordariomycetes: LTS0130369
- 132464 - Spatholobus: LTS0130369
- 455371 - Spatholobus suberectus: 10.1016/J.PHYTOCHEM.2006.05.008
- 455371 - Spatholobus suberectus: LTS0130369
- 455371 - Spatholobus Suberectus Dunn: -
- 553502 - Spirotropis: LTS0130369
- 1231571 - Spirotropis longifolia: 10.1016/J.PHYTOCHEM.2011.10.011
- 1231571 - Spirotropis longifolia: LTS0130369
- 1883 - Streptomyces:
- 1883 - Streptomyces: 10.1007/S10295-016-1800-4
- 1883 - Streptomyces: 10.1016/J.DIB.2019.104746
- 1883 - Streptomyces: 10.1021/ACS.JNATPROD.6B00738
- 1883 - Streptomyces: 10.1021/JF00096A028
- 1883 - Streptomyces: 10.1038/JA.2012.81
- 1883 - Streptomyces: 10.1080/10286020.2019.1635588
- 1883 - Streptomyces: 10.1080/14786419.2012.750317
- 1883 - Streptomyces: 10.1080/14786419.2016.1269100
- 1883 - Streptomyces: 10.1515/ZNB-2003-0713
- 1883 - Streptomyces: 10.7164/ANTIBIOTICS.49.758
- 1883 - Streptomyces: LTS0130369
- 68179 - Streptomyces bacillaris: 10.1007/S00284-018-1517-X
- 67258 - Streptomyces cavourensis: 10.1007/S00284-018-1517-X
- 67258 - Streptomyces cavourensis: 10.1007/S10295-016-1800-4
- 67258 - Streptomyces cavourensis: 10.1016/J.DIB.2019.104746
- 67258 - Streptomyces cavourensis: 10.1021/ACS.JNATPROD.6B00738
- 67258 - Streptomyces cavourensis: 10.1038/JA.2012.81
- 67258 - Streptomyces cavourensis: 10.1080/10286020.2019.1635588
- 67258 - Streptomyces cavourensis: 10.1080/14786419.2012.750317
- 67258 - Streptomyces cavourensis: 10.1080/14786419.2016.1269100
- 67258 - Streptomyces cavourensis: 10.7164/ANTIBIOTICS.49.758
- 67258 - Streptomyces cavourensis: LTS0130369
- 1908 - Streptomyces globisporus: 10.1007/S10295-016-1800-4
- 1908 - Streptomyces globisporus: 10.1016/J.DIB.2019.104746
- 1908 - Streptomyces globisporus: 10.1021/ACS.JNATPROD.6B00738
- 1908 - Streptomyces globisporus: 10.1038/JA.2012.81
- 1908 - Streptomyces globisporus: 10.1080/10286020.2019.1635588
- 1908 - Streptomyces globisporus: 10.1080/14786419.2012.750317
- 1908 - Streptomyces globisporus: 10.1080/14786419.2016.1269100
- 1908 - Streptomyces globisporus: 10.7164/ANTIBIOTICS.49.758
- 1908 - Streptomyces globisporus: LTS0130369
- 47716 - Streptomyces olivaceus: 10.1007/S10295-016-1800-4
- 47716 - Streptomyces olivaceus: 10.1016/J.DIB.2019.104746
- 47716 - Streptomyces olivaceus: 10.1021/ACS.JNATPROD.6B00738
- 47716 - Streptomyces olivaceus: 10.1038/JA.2012.81
- 47716 - Streptomyces olivaceus: 10.1080/10286020.2019.1635588
- 47716 - Streptomyces olivaceus: 10.1080/14786419.2012.750317
- 47716 - Streptomyces olivaceus: 10.1080/14786419.2016.1269100
- 47716 - Streptomyces olivaceus: 10.7164/ANTIBIOTICS.49.758
- 47716 - Streptomyces olivaceus: LTS0130369
- 183408 - Streptomyces padanus: 10.1021/JF025879B
- 183408 - Streptomyces padanus: LTS0130369
- 67385 - Streptomyces xanthophaeus: 10.1007/S10295-016-1800-4
- 67385 - Streptomyces xanthophaeus: 10.1016/J.DIB.2019.104746
- 67385 - Streptomyces xanthophaeus: 10.1021/ACS.JNATPROD.6B00738
- 67385 - Streptomyces xanthophaeus: 10.1038/JA.2012.81
- 67385 - Streptomyces xanthophaeus: 10.1080/10286020.2019.1635588
- 67385 - Streptomyces xanthophaeus: 10.1080/14786419.2012.750317
- 67385 - Streptomyces xanthophaeus: 10.1080/14786419.2016.1269100
- 67385 - Streptomyces xanthophaeus: 10.7164/ANTIBIOTICS.49.758
- 67385 - Streptomyces xanthophaeus: LTS0130369
- 2062 - Streptomycetaceae: LTS0130369
- 35493 - Streptophyta: LTS0130369
- 137301 - Styphnolobium: LTS0130369
- 3897 - Styphnolobium japonicum:
- 3897 - Styphnolobium japonicum: 10.1007/S12272-010-0805-1
- 3897 - Styphnolobium japonicum: 10.1080/10286020290019622
- 3897 - Styphnolobium japonicum: LTS0130369
- 214654 - Sundacarpus: LTS0130369
- 120640 - Sundacarpus amarus: 10.1071/CH9850485
- 178174 - Syzygium: LTS0130369
- 334483 - Syzygium jambos: 10.1002/(SICI)1099-1565(199707)8:4<176::AID-PCA351>3.0.CO;2-K
- 334483 - Syzygium jambos: LTS0130369
- 49852 - Thermopsis: LTS0130369
- 49853 - Thermopsis fabacea: 10.1248/CPB.28.3686
- 49853 - Thermopsis fabacea: LTS0130369
- 114320 - Thermopsis lanceolata:
- 691243 - Thomsonaria thomsonii: 10.1016/J.PHYTOCHEM.2010.08.015
- 39987 - Thymelaeaceae: LTS0130369
- 58023 - Tracheophyta: LTS0130369
- 3898 - Trifolium: LTS0130369
- 97007 - Trifolium alpestre:
- 97007 - Trifolium alpestre: 10.1021/JF00049A020
- 97007 - Trifolium alpestre: 10.1071/AR9670047
- 97007 - Trifolium alpestre: LTS0130369
- 361560 - Trifolium arvense: 10.1016/J.TALANTA.2009.03.011
- 361560 - Trifolium arvense: LTS0130369
- 97023 - Trifolium fragiferum: 10.1021/JF00049A020
- 97023 - Trifolium fragiferum: LTS0130369
- 60916 - Trifolium incarnatum: 10.1021/JF00049A020
- 60916 - Trifolium incarnatum: LTS0130369
- 97028 - Trifolium medium: 10.1016/J.TALANTA.2009.03.011
- 97028 - Trifolium medium: LTS0130369
- 74522 - Trifolium montanum: 10.1021/JF00049A020
- 74522 - Trifolium montanum: LTS0130369
- 97032 - Trifolium pannonicum: 10.1016/J.TALANTA.2009.03.011
- 97032 - Trifolium pannonicum: LTS0130369
- 57577 - Trifolium pratense:
- 57577 - Trifolium pratense: 10.1016/J.FITOTE.2006.01.004
- 57577 - Trifolium pratense: 10.1016/J.TALANTA.2009.03.011
- 57577 - Trifolium pratense: 10.1016/S0021-9673(01)01231-6
- 57577 - Trifolium pratense: 10.1016/S0021-9673(96)00578-X
- 57577 - Trifolium pratense: 10.1016/S0021-9673(99)00110-7
- 57577 - Trifolium pratense: 10.1016/S1570-0232(02)00079-X
- 57577 - Trifolium pratense: 10.1021/JF00049A020
- 57577 - Trifolium pratense: 10.1021/JF050448P
- 57577 - Trifolium pratense: 10.1071/AR9670047
- 57577 - Trifolium pratense: 10.1093/OXFORDJOURNALS.JHERED.A102397
- 57577 - Trifolium pratense: 10.1097/GME.0B013E318156F9D6
- 57577 - Trifolium pratense: LTS0130369
- 3899 - Trifolium repens:
- 3899 - Trifolium repens: 10.1021/JF00049A020
- 3899 - Trifolium repens: 10.1021/JF60116A026
- 3899 - Trifolium repens: 10.1093/OXFORDJOURNALS.JHERED.A102397
- 3899 - Trifolium repens: LTS0130369
- 97037 - Trifolium rubens: 10.1016/J.TALANTA.2009.03.011
- 97037 - Trifolium rubens: LTS0130369
- 3900 - Trifolium subterraneum:
- 3900 - Trifolium subterraneum: 10.1016/S0021-9150(99)00029-5
- 3900 - Trifolium subterraneum: 10.1021/JF00049A020
- 3900 - Trifolium subterraneum: 10.1071/AR9670047
- 3900 - Trifolium subterraneum: LTS0130369
- 78532 - Trigonella: LTS0130369
- 78534 - Trigonella foenum-graecum: 10.1007/S11418-010-0407-8
- 78534 - Trigonella foenum-graecum: LTS0130369
- 3913 - Vigna: LTS0130369
- 157791 - Vigna radiata: 10.1007/BF00633405
- 157791 - Vigna radiata: LTS0130369
- 3916 - Vigna radiata var. radiata: 10.1007/BF00633405
- 3916 - Vigna radiata var. radiata: LTS0130369
- 33090 - Viridiplantae: LTS0130369
- 142693 - Wikstroemia: LTS0130369
- 3921 - Wisteria: LTS0130369
- 185975 - Wisteria brachybotrys: 10.1016/0031-9422(88)80628-9
- 185975 - Wisteria brachybotrys: LTS0130369
- 33090 - 大豆: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xuemei Yang, Xinhui Jiang, Changqing Liu, Chuang Yang, Sheng Yao, Hongmei Qiu, Junxia Yang, Ke Wu, Hong Liao, Qingsong Jiang. Daidzein protects endothelial cells against high glucose-induced injury through the dual-activation of PPARα and PPARγ.
General physiology and biophysics.
2024 Mar; 43(2):153-162. doi:
10.4149/gpb_2023041
. [PMID: 38477605] - Iskandar Azmy Harahap, Maciej Kuligowski, Adam Cieslak, Paweł A Kołodziejski, Joanna Suliburska. Effect of Tempeh and Daidzein on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in Ovariectomized Rats.
Nutrients.
2024 Feb; 16(5):. doi:
10.3390/nu16050651
. [PMID: 38474779] - Wenjing Ta, Jie Wang, Jihong Song, Xingyue Li, Jianxiang Wang, Wen Lu. Elucidation the mechanism of the active ingredient imperatorin promoting drug absorption in cell model.
The Journal of pharmacy and pharmacology.
2024 Jan; ?(?):. doi:
10.1093/jpp/rgad127
. [PMID: 38215001] - Carlos Eduardo Iglesias-Aguirre, María Romo-Vaquero, María Victoria Selma, Juan Carlos Espín. Unveiling metabotype clustering in resveratrol, daidzein, and ellagic acid metabolism: Prevalence, associated gut microbiomes, and their distinctive microbial networks.
Food research international (Ottawa, Ont.).
2023 Nov; 173(Pt 2):113470. doi:
10.1016/j.foodres.2023.113470
. [PMID: 37803793] - Yi-Hui Wang, Xiao-Hui Gao, Xuan Li, Yu-Jie Ding, Qing Shi, Zhi-Yu Yang, Dian Peng, Hao-Ran Liu. Design, synthesis and the evaluation of cholinesterase inhibition and blood-brain permeability of daidzein derivatives or analogs.
Chemical biology & drug design.
2023 10; 102(4):718-729. doi:
10.1111/cbdd.14279
. [PMID: 37291745] - Yong-Mei Guan, Sheng-Hang Ye, Xiang Zhou, Zhen-Zhong Zang, Li-Hua Chen, Wei-Feng Zhu. [Preparation and in vitro property evaluation of β-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jun; 48(11):2949-2957. doi:
10.19540/j.cnki.cjcmm.20230329.302
. [PMID: 37381955] - Yunong Zeng, Rong Wu, Fangzhao Wang, Shan Li, Lei Li, Yanru Li, Ping Qin, Mingyuan Wei, Junhao Yang, Jie Wu, Ali Chen, Guibao Ke, Zhengzheng Yan, Hong Yang, Zhongqing Chen, Zhang Wang, Wei Xiao, Yong Jiang, Xia Chen, Zhenhua Zeng, Xiaoshan Zhao, Peng Chen, Shenhai Gong. Liberation of daidzein by gut microbial β-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice.
Cell host & microbe.
2023 Apr; ?(?):. doi:
10.1016/j.chom.2023.04.002
. [PMID: 37100057] - Jiayan Liu, Yuxin Fu, Shuaishuai Zhou, Pengyu Zhao, Jian Zhao, Qinglin Yang, Hao Wu, Manyi Ding, Yao Li. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period.
Poultry science.
2023 Mar; 102(6):102674. doi:
10.1016/j.psj.2023.102674
. [PMID: 37104906] - Sukhbir Singh, Sonam Grewal, Neelam Sharma, Tapan Behl, Sumeet Gupta, Md Khalid Anwer, Celia Vargas-De-La-Cruz, Syam Mohan, Simona Gabriela Bungau, Adrian Bumbu. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041765
. [PMID: 36838751] - Yuka Horio, Yuji Isegawa, Mototada Shichiri. Daidzein phosphorylates and activates 5-lipoxygenase via the MEK/ERK pathway: a mechanism for inducing the production of 5-lipoxygenase metabolite that inhibit influenza virus intracellular replication.
The Journal of nutritional biochemistry.
2023 Jan; 114(?):109276. doi:
10.1016/j.jnutbio.2023.109276
. [PMID: 36682398] - Baoping Zhang, Xiaohan Wei, Mengze Ding, Zhenye Luo, Xiaomei Tan, Zezhong Zheng. Daidzein Protects Caco-2 Cells against Lipopolysaccharide-Induced Intestinal Epithelial Barrier Injury by Suppressing PI3K/AKT and P38 Pathways.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248928
. [PMID: 36558058] - Abhay Punia, Nalini Singh Chauhan. Effect of daidzein on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius).
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2022 Dec; 262(?):109465. doi:
10.1016/j.cbpc.2022.109465
. [PMID: 36103973] - Matheus Luís Oliveira Cunha, Lara Caroline Alves de Oliveira, Vinicius Martins Silva, Gabriel Sgarbiero Montanha, André Rodrigues Dos Reis. Selenium increases photosynthetic capacity, daidzein biosynthesis, nodulation and yield of peanuts plants (Arachis hypogaea L.).
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):231-239. doi:
10.1016/j.plaphy.2022.08.006
. [PMID: 36137309] - Chengjian Zhou, Ping Li, Meihong Han, Xuejun Gao. Daidzein stimulates fatty acid-induced fat deposition in C2C12 myoblast cells via the G protein-coupled receptor 30 pathway.
Animal biotechnology.
2022 Oct; 33(5):851-863. doi:
10.1080/10495398.2020.1842749
. [PMID: 33164657] - Huaxin Li, Mengxue Zhang, Yuanyu Wang, Ke Gong, Tengteng Yan, Dandan Wang, Xianshe Meng, Xiaoxiao Yang, Yuanli Chen, Jihong Han, Yajun Duan, Shuang Zhang. Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway.
Food & function.
2022 Sep; 13(18):9576-9588. doi:
10.1039/d2fo00772j
. [PMID: 36000402] - Floriberta Solano, Eunice Hernández, Lizbeth Juárez-Rojas, Susana Rojas-Maya, Gabriela López, Carlos Romero, Fahiel Casillas, Miguel Betancourt, Alma López, Reza Heidari, Mohammad Mehdi Ommati, Socorro Retana-Márquez. Reproductive disruption in adult female and male rats prenatally exposed to mesquite pod extract or daidzein.
Reproductive biology.
2022 Sep; 22(3):100683. doi:
10.1016/j.repbio.2022.100683
. [PMID: 35932513] - Ajay Guru, Gokul Sudhakaran, Manikandan Velayutham, Raghul Murugan, Raman Pachaiappan, Ramzi A Mothana, Omar M Noman, Annie Juliet, Jesu Arockiaraj. Daidzein normalized gentamicin-induced nephrotoxicity and associated pro-inflammatory cytokines in MDCK and zebrafish: Possible mechanism of nephroprotection.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2022 Aug; 258(?):109364. doi:
10.1016/j.cbpc.2022.109364
. [PMID: 35523404] - Raffaella Alò, Gilda Fazzari, Merylin Zizza, Ennio Avolio, Anna Di Vito, Ilaria Olvito, Rosalinda Bruno, Marcello Canonaco, Rosa Maria Facciolo. Emotional and Spontaneous Locomotor Behaviors Related to cerebellar Daidzein-dependent TrkB Expression Changes in Obese Hamsters.
Cerebellum (London, England).
2022 Jul; ?(?):. doi:
10.1007/s12311-022-01432-1
. [PMID: 35794426] - Ankit P Laddha, S Murugesan, Yogesh A Kulkarni. In-vivo and in-silico toxicity studies of daidzein: an isoflavone from soy.
Drug and chemical toxicology.
2022 May; 45(3):1408-1416. doi:
10.1080/01480545.2020.1833906
. [PMID: 33059469] - Esra Demirtürk, Afife Büşra Ugur Kaplan, Meltem Cetin, Kübra Akıllıoğlu, Meltem Dönmez Kutlu, Seda Köse, Fazilet Aksu. Assessment of Pharmacokinetic Parameters of Daidzein-Containing Nanosuspension and Nanoemulsion Formulations After Oral Administration to Rats.
European journal of drug metabolism and pharmacokinetics.
2022 Mar; 47(2):247-257. doi:
10.1007/s13318-021-00746-5
. [PMID: 35018554] - Mengmeng Yu, Hao Qi, Xuejun Gao. Daidzein promotes milk synthesis and proliferation of mammary epithelial cells via the estrogen receptor α-dependent NFκB1 activation.
Animal biotechnology.
2022 Feb; 33(1):43-52. doi:
10.1080/10495398.2020.1763376
. [PMID: 32401613] - Jinyue Liu, Wenbo Jiang. Identification and characterization of unique 5-hydroxyisoflavonoid biosynthetic key enzyme genes in Lupinus albus.
Plant cell reports.
2022 Feb; 41(2):415-430. doi:
10.1007/s00299-021-02818-x
. [PMID: 34851457] - Qianrui Wang, Bert Spenkelink, Rungnapa Boonpawa, Ivonne M C M Rietjens. Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol.
Journal of agricultural and food chemistry.
2022 Jan; 70(1):343-352. doi:
10.1021/acs.jafc.1c03950
. [PMID: 34855380] - Majid Askaripour, Hamid Najafipour, Shadan Saberi, Elham Jafari, Soodeh Rajabi. Daidzein Mitigates Oxidative Stress and Inflammation in the Injured Kidney of Ovariectomized Rats: AT1 and Mas Receptor Functions.
Iranian journal of kidney diseases.
2022 Jan; 1(1):32-43. doi:
. [PMID: 35271498]
- Rina Agustina, Yusuke Masuo, Yasuto Kido, Kyosuke Shinoda, Takahiro Ishimoto, Yukio Kato. Identification of Food-Derived Isoflavone Sulfates as Inhibition Markers for Intestinal Breast Cancer Resistance Proteins.
Drug metabolism and disposition: the biological fate of chemicals.
2021 11; 49(11):972-984. doi:
10.1124/dmd.121.000534
. [PMID: 34413161] - Ankit P Laddha, Yogesh A Kulkarni. Daidzein mitigates myocardial injury in streptozotocin-induced diabetes in rats.
Life sciences.
2021 Nov; 284(?):119664. doi:
10.1016/j.lfs.2021.119664
. [PMID: 34090859] - Zhao-Min Liu, Di Zhang, Guoyi Li, Suzanne C Ho, Yu-Ming Chen, Jing Ma, Qi Huang, Shuyi Li, Wen-Hua Ling. The 6-month effect of whole soy and purified isoflavones daidzein on thyroid function-A double-blind, randomized, placebo controlled trial among Chinese equol-producing postmenopausal women.
Phytotherapy research : PTR.
2021 Oct; 35(10):5838-5846. doi:
10.1002/ptr.7244
. [PMID: 34494323] - Yingchao Li, Farong Lu, Yawei Zhang, Xiaoyu Liu, Longyi Lin, Qikun Jiang, Tianhong Zhang. A rapid ultra high performance liquid chromatography-tandem mass spectrometry method for the quantification of daidzein, its valine carbamate prodrug, and glucuronide in rat plasma samples: Comparison of the pharmacokinetic behavior of daidzine valine carbamate prodrugs.
Journal of separation science.
2021 Oct; 44(19):3691-3699. doi:
10.1002/jssc.202100331
. [PMID: 34347375] - Yan-Bin Ye, Kai-Yin He, Wan-Lin Li, Shu-Yu Zhuo, Yu-Ming Chen, Wei Lu, Shang-Ling Wu, Juan Liu, Yan-Bing Li, Fang-Fang Zeng. Effects of daidzein and genistein on markers of cardiovascular disease risk among women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial.
Food & function.
2021 Sep; 12(17):7997-8006. doi:
10.1039/d1fo00712b
. [PMID: 34263280] - Sulagna Gupta, Wei Ning Chen. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract.
Journal of the science of food and agriculture.
2021 Sep; 101(12):5124-5131. doi:
10.1002/jsfa.11158
. [PMID: 33608899] - Tobias Goris, Rafael R C Cuadrat, Annett Braune. Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study.
Nutrients.
2021 08; 13(8):. doi:
10.3390/nu13082688
. [PMID: 34444848] - Hong Zhang, Mengyi Chi, Linlin Chen, Xipeng Sun, Lili Wan, Quanjun Yang, Cheng Guo. Daidzein alleviates cisplatin-induced muscle atrophy by regulating Glut4/AMPK/FoxO pathway.
Phytotherapy research : PTR.
2021 Aug; 35(8):4363-4376. doi:
10.1002/ptr.7132
. [PMID: 33876509] - Ankita R Rane, Harshad Paithankar, Ramakrishna V Hosur, Sinjan Choudhary. Modulation of α-synuclein fibrillation by plant metabolites, daidzein, fisetin and scopoletin under physiological conditions.
International journal of biological macromolecules.
2021 Jul; 182(?):1278-1291. doi:
10.1016/j.ijbiomac.2021.05.071
. [PMID: 33991558] - Yujiao He, Maolin Huang, Chunyan Tang, Yan Yue, Xiao Liu, Zhebin Zheng, Hongbo Dong, Deming Liu. Dietary daidzein inhibits hepatitis C virus replication by decreasing microRNA-122 levels.
Virus research.
2021 06; 298(?):198404. doi:
10.1016/j.virusres.2021.198404
. [PMID: 33775754] - Ling Zhang, Guang Zhong, Wenjie Gu, Na Yin, Long Chen, Shourong Shi. Dietary supplementation with daidzein and Chinese herbs, independently and combined, improves laying performance, egg quality and plasma hormone levels of post-peak laying hens.
Poultry science.
2021 Jun; 100(6):101115. doi:
10.1016/j.psj.2021.101115
. [PMID: 33975040] - Yingyu Guo, Lichao Zhao, Xiang Fang, Qingping Zhong, Huijun Liang, Wenou Liang, Li Wang. Isolation and identification of a human intestinal bacterium capable of daidzein conversion.
FEMS microbiology letters.
2021 05; 368(8):. doi:
10.1093/femsle/fnab046
. [PMID: 33930123] - Ling Li, Xiao-Jie Jin, Jia-Wei Li, Cheng-Hao Li, Shuang-Yan Zhou, Jun-Jie Li, Cai-Qin Feng, Dong-Ling Liu, Yong-Qi Liu. Systematic insight into the active constituents and mechanism of Guiqi Baizhu for the treatment of gastric cancer.
Cancer science.
2021 May; 112(5):1772-1784. doi:
10.1111/cas.14851
. [PMID: 33682294] - Miwako Toyofuku, Fuki Okutani, Masaru Nakayasu, Shoichiro Hamamoto, Hisabumi Takase, Kazufumi Yazaki, Akifumi Sugiyama. Enhancement of developmentally regulated daidzein secretion from soybean roots in field conditions as compared with hydroponic culture.
Bioscience, biotechnology, and biochemistry.
2021 Apr; 85(5):1165-1169. doi:
10.1093/bbb/zbab017
. [PMID: 33784734] - Ankur Kumar Tanwar, Neha Dhiman, Amit Kumar, Vikas Jaitak. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach.
European journal of medicinal chemistry.
2021 Mar; 213(?):113037. doi:
10.1016/j.ejmech.2020.113037
. [PMID: 33257172] - Tian Deng, Na Zhang, Yi Liu, Junmin Li. Daidzein ameliorates experimental acute reflux esophagitis in rats via regulation of cytokines.
Die Pharmazie.
2021 02; 76(2):84-91. doi:
10.1691/ph.2021.01003
. [PMID: 33714284] - Sarah M Jung, Ella H Haddad, Amandeep Kaur, Rawiwan Sirirat, Alice Y Kim, Keiji Oda, Sujatha Rajaram, Joan Sabaté. A Non-Probiotic Fermented Soy Product Reduces Total and LDL Cholesterol: A Randomized Controlled Crossover Trial.
Nutrients.
2021 Feb; 13(2):. doi:
10.3390/nu13020535
. [PMID: 33562090] - Ankit P Laddha, Yogesh A Kulkarni. Daidzein ameliorates diabetic retinopathy in experimental animals.
Life sciences.
2021 Jan; 265(?):118779. doi:
10.1016/j.lfs.2020.118779
. [PMID: 33217441] - Sherin Zakaria, Reem Nawaya, Nabil M Abdel-Hamid, Ramadan A Eldomany, Mamdouh M El-Shishtawy. Targeting the HIF-1α/Cav-1 Pathway with a Chicory Extract/Daidzein Combination Plays a Potential Role in Retarding Hepatocellular Carcinoma.
Current cancer drug targets.
2021; 21(10):881-896. doi:
10.2174/1568009621666210811121120
. [PMID: 34382525] - Haruya Takahashi, Koji Ochiai, Kuni Sasaki, Atsushi Izumi, Yu Shinyama, Shinsuke Mohri, Wataru Nomura, Huei-Fen Jheng, Teruo Kawada, Kazuo Inoue, Tsuyoshi Goto. Metabolome analysis revealed that soybean-Aspergillus oryzae interaction induced dynamic metabolic and daidzein prenylation changes.
PloS one.
2021; 16(7):e0254190. doi:
10.1371/journal.pone.0254190
. [PMID: 34214105] - Takahito Chiba, Takuya Nagai, Futoshi Kohda, Takeshi Nakahara, Michihiro Kono. The Connection between Urinary Equol Levels and the Prevalence of Atopic Dermatitis.
International archives of allergy and immunology.
2021; 182(1):32-38. doi:
10.1159/000510119
. [PMID: 32932251] - Shelby L Johnson, Hyun Y Park, Dhiraj A Vattem, Paula Grammas, Hang Ma, Navindra P Seeram. Equol, a Blood-Brain Barrier Permeable Gut Microbial Metabolite of Dietary Isoflavone Daidzein, Exhibits Neuroprotective Effects against Neurotoxins Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells and Caenorhabditis elegans.
Plant foods for human nutrition (Dordrecht, Netherlands).
2020 Dec; 75(4):512-517. doi:
10.1007/s11130-020-00840-0
. [PMID: 32761299] - Seoung Rak Lee, Felix Schalk, Jan W Schwitalla, René Benndorf, John Vollmers, Anne-Kristin Kaster, Z Wilhelm de Beer, Minji Park, Mi-Jeong Ahn, Won Hee Jung, Christine Beemelmanns, Ki Hyun Kim. Polyhalogenation of Isoflavonoids by the Termite-Associated Actinomadura sp. RB99.
Journal of natural products.
2020 10; 83(10):3102-3110. doi:
10.1021/acs.jnatprod.0c00676
. [PMID: 32946237] - Minsu Kim, Seowoo Im, Yoon Keun Cho, Cheoljun Choi, Yeonho Son, Doyoung Kwon, Young-Suk Jung, Yun-Hee Lee. Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin.
Biomolecules.
2020 09; 10(10):. doi:
10.3390/biom10101394
. [PMID: 33008006] - Zhao-Min Liu, Guoyi Li, Di Zhang, Suzanne C Ho, Yu-Ming Chen, Jing Ma, Qi Huang, Shuyi Li, Wen-Hua Ling. Effect of whole soy and purified daidzein on androgenic hormones in chinese equol-producing post-menopausal women: a six-month randomised, double-blinded and Placebo-Controlled trial.
International journal of food sciences and nutrition.
2020 Aug; 71(5):644-652. doi:
10.1080/09637486.2020.1712682
. [PMID: 31914834] - Gulsah Gundogdu, Fatma Demirkaya Miloglu, Koksal Gundogdu, Seymanur Yilmaz Tasci, Mevlut Albayrak, Tuba Demirci, Meltem Cetin. Investigation of the efficacy of daidzein in experimental knee osteoarthritis-induced with monosodium iodoacetate in rats.
Clinical rheumatology.
2020 Aug; 39(8):2399-2408. doi:
10.1007/s10067-020-04958-z
. [PMID: 32103372] - Vladimir Ajdžanović, Marko Miler, Jasmina Živanović, Branko Filipović, Branka Šošić-Jurjević, Florina Popovska-Perčinić, Verica Milošević. The adrenal cortex after estradiol or daidzein application in a rat model of the andropause: Structural and hormonal study.
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.
2020 Jul; 230(?):151487. doi:
10.1016/j.aanat.2020.151487
. [PMID: 32120001] - Amritha Johny, Lada Ivanova, Tone-Kari Knutsdatter Østbye, Christiane Kruse Fæste. Biotransformation of phytoestrogens from soy in enzymatically characterized liver microsomes and primary hepatocytes of Atlantic salmon.
Ecotoxicology and environmental safety.
2020 Jul; 197(?):110611. doi:
10.1016/j.ecoenv.2020.110611
. [PMID: 32294595] - Masyitah Hasan, Endang Kumolosasi, Malina Jasamai, Jamia Azdina Jamal, Norazrina Azmi, Nor Fadilah Rajab. Evaluation of phytoestrogens in inducing cell death mediated by decreasing Annexin A1 in Annexin A1-knockdown leukemia cells.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2020 Jun; 28(1):97-108. doi:
10.1007/s40199-019-00320-0
. [PMID: 31912375] - Weie Zhou, Hanqiu Wu, Qian Wang, Xuefeng Zhou, Yuan Zhang, Wenjie Wu, Yuyang Wang, Zhiqin Ren, Hongna Li, Yun Ling, Feng Zhang, Ping Li. Simultaneous determination of formononetin, biochanin A and their active metabolites in human breast milk, saliva and urine using salting-out assisted liquid-liquid extraction and ultra high performance liquid chromatography-electrospray ionization tandem mass spectrum.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2020 May; 1145(?):122108. doi:
10.1016/j.jchromb.2020.122108
. [PMID: 32305709] - Yae Rim Choi, Jaewon Shim, Min Jung Kim. Genistin: A Novel Potent Anti-Adipogenic and Anti-Lipogenic Agent.
Molecules (Basel, Switzerland).
2020 Apr; 25(9):. doi:
10.3390/molecules25092042
. [PMID: 32349444] - Jing-Ran Fan, Yi Kuang, Ze-Yuan Dong, Yang Yi, Yan-Xia Zhou, Bin Li, Xue Qiao, Min Ye. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors.
Journal of natural products.
2020 04; 83(4):814-824. doi:
10.1021/acs.jnatprod.9b00262
. [PMID: 32196343] - Oliver Helk, Kurt Widhalm. Effects of a low-fat dietary regimen enriched with soy in children affected with heterozygous familial hypercholesterolemia.
Clinical nutrition ESPEN.
2020 04; 36(?):150-156. doi:
10.1016/j.clnesp.2019.09.009
. [PMID: 32220359] - Fuki Okutani, Shoichiro Hamamoto, Yuichi Aoki, Masaru Nakayasu, Naoto Nihei, Taku Nishimura, Kazufumi Yazaki, Akifumi Sugiyama. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community.
Plant, cell & environment.
2020 04; 43(4):1036-1046. doi:
10.1111/pce.13708
. [PMID: 31875335] - Bin Wang, Heshan Xu, Xiaoyin Hu, Wenyu Ma, Jian Zhang, Yuanfeng Li, Min Yu, Yaru Zhang, Xuegang Li, Xiaoli Ye. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway.
Life sciences.
2020 Mar; 245(?):117387. doi:
10.1016/j.lfs.2020.117387
. [PMID: 32007575] - Hong-Li Dong, Xin-Yi Tang, Yun-Yang Deng, Qing-Wei Zhong, Cheng Wang, Zhe-Qing Zhang, Yu-Ming Chen. Urinary equol, but not daidzein and genistein, was inversely associated with the risk of type 2 diabetes in Chinese adults.
European journal of nutrition.
2020 Mar; 59(2):719-728. doi:
10.1007/s00394-019-01939-0
. [PMID: 30953148] - Qianrui Wang, Bert Spenkelink, Rungnapa Boonpawa, Ivonne M C M Rietjens, Karsten Beekmann. Use of Physiologically Based Kinetic Modeling to Predict Rat Gut Microbial Metabolism of the Isoflavone Daidzein to S-Equol and Its Consequences for ERα Activation.
Molecular nutrition & food research.
2020 03; 64(6):e1900912. doi:
10.1002/mnfr.201900912
. [PMID: 32027771] - Kanano Kitamura, Jane Surya Erlangga, Sakuka Tsukamoto, Yuri Sakamoto, Hideaki Mabashi-Asazuma, Kaoruko Iida. Daidzein promotes the expression of oxidative phosphorylation- and fatty acid oxidation-related genes via an estrogen-related receptor α pathway to decrease lipid accumulation in muscle cells.
The Journal of nutritional biochemistry.
2020 03; 77(?):108315. doi:
10.1016/j.jnutbio.2019.108315
. [PMID: 31923756] - Ameesha Tomar, Swati Kaushik, Sana Irfan Khan, Khushboo Bisht, Tapas Chandra Nag, Dharamvir Singh Arya, Jagriti Bhatia. The dietary isoflavone daidzein mitigates oxidative stress, apoptosis, and inflammation in CDDP-induced kidney injury in rats: Impact of the MAPK signaling pathway.
Journal of biochemical and molecular toxicology.
2020 Feb; 34(2):e22431. doi:
10.1002/jbt.22431
. [PMID: 31833131] - Du Hyun Kim, Won Tae Yang, Kye Man Cho, Jin Hwan Lee. Comparative analysis of isoflavone aglycones using microwave-assisted acid hydrolysis from soybean organs at different growth times and screening for their digestive enzyme inhibition and antioxidant properties.
Food chemistry.
2020 Feb; 305(?):125462. doi:
10.1016/j.foodchem.2019.125462
. [PMID: 31618694] - Xuejing Jia, Chao Zhang, Jiaolin Bao, Kai Wang, Yanbei Tu, Jian-Bo Wan, Chengwei He. Flavonoids from Rhynchosia minima root exerts anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathway.
Inflammopharmacology.
2020 Feb; 28(1):289-297. doi:
10.1007/s10787-019-00632-2
. [PMID: 31446590] - Mengjun Shi, Yiping Cui, Cunyu Liu, Changqin Li, Zhenhua Liu, Wen-Yi Kang. CYPs-mediated drug-drug interactions on psoralidin, isobavachalcone, neobavaisoflavone and daidzein in rats liver microsomes.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Feb; 136(?):111027. doi:
10.1016/j.fct.2019.111027
. [PMID: 31870919] - Huan Liang, Lanjiao Xu, Xianghui Zhao, Ke Pan, Zhonghua Yi, Jun Bai, Xinglei Qi, Junping Xin, Meifa Li, Kehui Ouyang, Xiaozhen Song, Chanjuan Liu, Mingren Qu. RNA-Seq analysis reveals the potential molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle.
Journal of animal physiology and animal nutrition.
2020 Jan; 104(1):1-11. doi:
10.1111/jpn.13218
. [PMID: 31850600] - Hiroko Yoshioka, Masamichi Watanabe, Fumio Nanba, Toshio Suzuki, Satoru Fukiya, Atsushi Yokota, Toshiya Toda. Administration of Cholic Acid Inhibits Equol Production from Daidzein in Mice.
Journal of nutritional science and vitaminology.
2020; 66(6):571-576. doi:
10.3177/jnsv.66.571
. [PMID: 33390399] - Young Sung Jung, Ye-Jin Kim, Aaron Taehwan Kim, Davin Jang, Mi-Seon Kim, Dong-Ho Seo, Tae Gyu Nam, Chan-Su Rha, Cheon-Seok Park, Dae-Ok Kim. Enrichment of Polyglucosylated Isoflavones from Soybean Isoflavone Aglycones Using Optimized Amylosucrase Transglycosylation.
Molecules (Basel, Switzerland).
2020 Jan; 25(1):. doi:
10.3390/molecules25010181
. [PMID: 31906359] - Malarvizhi Ramalingam, Veeresh K Sali, Meenakshi Bhardwaj, Sugumar Mani, Hannah R Vasanthi. Inhibition of Cyclooxygenase Enzyme by Bioflavonoids in Horsegram Seeds Alleviates Pain and Inflammation.
Combinatorial chemistry & high throughput screening.
2020; 23(9):931-938. doi:
10.2174/1386207323666200127114551
. [PMID: 31985369] - Hyeong-U Son, Eun-Kyeong Yoon, Chi-Yeol Yoo, Chul-Hong Park, Myung-Ae Bae, Tae-Ho Kim, Chang Hyung Lee, Ki Won Lee, Hogyun Seo, Kyung-Jin Kim, Sang-Han Lee. Effects of Synergistic Inhibition on α-glucosidase by Phytoalexins in Soybeans.
Biomolecules.
2019 12; 9(12):. doi:
10.3390/biom9120828
. [PMID: 31817312] - Yingjie Sun, Hongmin Zhang, Ming Cheng, Shijie Cao, Miao Qiao, Boli Zhang, Liqin Ding, Feng Qiu. New hepatoprotective isoflavone glucosides from Pueraria lobata (Willd.) Ohwi.
Natural product research.
2019 Dec; 33(24):3485-3492. doi:
10.1080/14786419.2018.1484461
. [PMID: 29968479] - Romero-Palacios Sergio, Rojas-Maya Susana, Delgadillo José Alberto, Retana-Márquez Socorro. Leucaena leucocephala extract has estrogenic and antiestrogenic actions on female rat reproduction.
Physiology & behavior.
2019 11; 211(?):112683. doi:
10.1016/j.physbeh.2019.112683
. [PMID: 31533020] - Elisabeth Buhlmann, Carla Horváth, Joëlle Houriet, Elke Kiehlmann, Janine Radtke, Laurence Marcourt, Jean-Luc Wolfender, Christian Wolfrum, Sven Schröder. Puerariae lobatae root extracts and the regulation of brown fat activity.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2019 Nov; 64(?):153075. doi:
10.1016/j.phymed.2019.153075
. [PMID: 31476558] - Eric Rochester, Brooke E Wickman, Andrea Bell, Christy Simecka, Zachary S Clayton, Reza Hakkak, Shirin Hooshmand. A diet containing high- versus low-daidzein does not affect bone density and osteogenic gene expression in the obese Zucker rat model.
Food & function.
2019 Oct; 10(10):6851-6857. doi:
10.1039/c9fo01292c
. [PMID: 31580380] - Kanumuri Siva Rama Raju, Mamunur Rashid, Manoj Gundeti, Isha Taneja, Mohd Yaseen Malik, Sandeep Kumar Singh, Swati Chaturvedi, Muralikrishna Challagundla, Sheelendra Pratap Singh, J R Gayen, Muhammad Wahajuddin. LC-ESI-MS/MS method for the simultaneous determination of isoformononetin, daidzein, and equol in rat plasma: Application to a preclinical pharmacokinetic study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2019 Oct; 1129(?):121776. doi:
10.1016/j.jchromb.2019.121776
. [PMID: 31629309] - Yuan Heng, Min Jung Kim, Hye Jeong Yang, Suna Kang, Sunmin Park. Lactobacillus intestinalis efficiently produces equol from daidzein and chungkookjang, short-term fermented soybeans.
Archives of microbiology.
2019 Oct; 201(8):1009-1017. doi:
10.1007/s00203-019-01665-5
. [PMID: 31069407] - Lan Luo, Jiazhen Kang, Weijun Zhao, Yue Qi, Shengwang Liang. Validated LC-MS/MS method for simultaneous quantification of seven components of Naodesheng in rat serum after oral administration and its application to a pharmacokinetic study.
Journal of pharmaceutical and biomedical analysis.
2019 Sep; 174(?):1-7. doi:
10.1016/j.jpba.2019.05.036
. [PMID: 31153133] - Dominika Skolmowska, Dominika Głąbska, Dominika Guzek, Gustaw Lech. Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals.
Nutrients.
2019 Aug; 11(8):. doi:
10.3390/nu11081936
. [PMID: 31426486] - Yuya Fujitaka, Hiroki Hamada, Daisuke Uesugi, Atsuhito Kuboki, Kei Shimoda, Takafumi Iwaki, Yuya Kiriake, Tomohiro Saikawa. Synthesis of Daidzein Glycosides, α-Tocopherol Glycosides, Hesperetin Glycosides by Bioconversion and Their Potential for Anti-Allergic Functional-Foods and Cosmetics.
Molecules (Basel, Switzerland).
2019 Aug; 24(16):. doi:
10.3390/molecules24162975
. [PMID: 31426346] - Kuan Chen, Zhi-Min Hu, Wei Song, Zi-Long Wang, Jun-Bin He, Xiao-Meng Shi, Qing-Hua Cui, Xue Qiao, Min Ye. Diversity of O-Glycosyltransferases Contributes to the Biosynthesis of Flavonoid and Triterpenoid Glycosides in Glycyrrhiza uralensis.
ACS synthetic biology.
2019 08; 8(8):1858-1866. doi:
10.1021/acssynbio.9b00171
. [PMID: 31284719] - Fatima Nayeem, Nai-Wei Chen, Manubai Nagamani, Karl E Anderson, Lee-Jane W Lu. Daidzein and genistein have differential effects in decreasing whole body bone mineral density but had no effect on hip and spine density in premenopausal women: A 2-year randomized, double-blind, placebo-controlled study.
Nutrition research (New York, N.Y.).
2019 08; 68(?):70-81. doi:
10.1016/j.nutres.2019.06.007
. [PMID: 31421395] - Y Q Xiao, D Shao, Z W Sheng, Q Wang, S R Shi. A mixture of daidzein and Chinese herbs increases egg production and eggshell strength as well as blood plasma Ca, P, antioxidative enzymes, and luteinizing hormone levels in post-peak, brown laying hens.
Poultry science.
2019 Aug; 98(8):3298-3303. doi:
10.3382/ps/pez178
. [PMID: 30993323] - Hui Wang, Yi Xiao, Hai Wang, Zechun Sang, Xiaole Han, Shuzhen Ren, Ruofei Du, Xiufeng Shi, Yan Xie. Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis.
International journal of pharmaceutics.
2019 Jul; 566(?):67-76. doi:
10.1016/j.ijpharm.2019.05.051
. [PMID: 31125715] - Shuhong Dai, Mingfang Pan, Hani S El-Nezami, Jennifer M F Wan, M F Wang, Olivier Habimana, Jetty C Y Lee, Jimmy C Y Louie, Nagendra P Shah. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota.
Journal of food science.
2019 Jul; 84(7):1854-1863. doi:
10.1111/1750-3841.14661
. [PMID: 31206699] - Yang Yi, Bożena Adrjan, Jun Li, Bin Hu, Szczepan Roszak. NMR studies of daidzein and puerarin: active anti-oxidants in traditional Chinese medicine.
Journal of molecular modeling.
2019 Jun; 25(7):202. doi:
10.1007/s00894-019-4090-8
. [PMID: 31243583] - Sara Caceres, Gema Silván, Maria J Illera, Pilar Millan, Gabriel Moyano, Juan C Illera. Effects of soya milk on reproductive hormones during puberty in male Wistar rats.
Reproduction in domestic animals = Zuchthygiene.
2019 Jun; 54(6):855-863. doi:
10.1111/rda.13434
. [PMID: 30924551] - Aki Obara, Mizuki Kinoshita, Kaori Hosoda, Akitomo Yokokawa, Hiromi Shibasaki, Kazuo Ishii. Identification of equol-7-glucuronide-4'-sulfate, monoglucuronides and monosulfates in human plasma of 2 equol producers after administration of kinako by LC-ESI-MS.
Pharmacology research & perspectives.
2019 06; 7(3):e00478. doi:
10.1002/prp2.478
. [PMID: 31086672] - B Šošić-Jurjević, D Lütjohann, K Renko, B Filipović, N Radulović, V Ajdžanović, S Trifunović, N Nestorović, J Živanović, M Manojlović Stojanoski, J Kӧhrle, V Milošević. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats.
The Journal of steroid biochemistry and molecular biology.
2019 06; 190(?):1-10. doi:
10.1016/j.jsbmb.2019.03.009
. [PMID: 30885834] - Jianxiu Zhai, Zehai Song, Yuwei Wang, Mingshu Han, Zhaohui Ren, Na Han, Zhihui Liu, Jun Yin. Zhixiong Capsule (ZXC), a traditional Chinese patent medicine, prevents atherosclerotic plaque formation in rabbit carotid artery and the related mechanism investigation based on network pharmacology and biological research.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2019 Jun; 59(?):152776. doi:
10.1016/j.phymed.2018.11.036
. [PMID: 31004886] - R Yao, C B Wong, K Nakamura, E Mitsuyama, A Tanaka, T Kuhara, T Odamaki, J-Z Xiao. Bifidobacterium breve MCC1274 with glycosidic activity enhances in vivo isoflavone bioavailability.
Beneficial microbes.
2019 May; 10(5):521-531. doi:
10.3920/bm2018.0179
. [PMID: 31090459] - Lan Luo, Jiazhen Kang, Qiong He, Yue Qi, Xingyu Chen, Shumei Wang, Shengwang Liang. A NMR-Based Metabonomics Approach to Determine Protective Effect of a Combination of Multiple Components Derived from Naodesheng on Ischemic Stroke Rats.
Molecules (Basel, Switzerland).
2019 May; 24(9):. doi:
10.3390/molecules24091831
. [PMID: 31086027] - Ankita Gupta, Ashish Sharma, Anil Kumar, Rohit Goyal. Alteration in memory cognition due to activation of caveolin-1 and oxidative damage in a model of dementia of Alzheimer's type.
Indian journal of pharmacology.
2019 May; 51(3):173-180. doi:
10.4103/ijp.ijp_81_17
. [PMID: 31391685] - Erin N Bax, Karlee E Cochran, Jiude Mao, Charles E Wiedmeyer, Cheryl S Rosenfeld. Opposing effects of S-equol supplementation on metabolic and behavioral parameters in mice fed a high-fat diet.
Nutrition research (New York, N.Y.).
2019 04; 64(?):39-48. doi:
10.1016/j.nutres.2018.12.008
. [PMID: 30802721] - Aleksandra Golonko, Tomasz Pienkowski, Renata Swislocka, Ryszard Lazny, Marek Roszko, Wlodzimierz Lewandowski. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
European journal of medicinal chemistry.
2019 Apr; 167(?):291-311. doi:
10.1016/j.ejmech.2019.01.044
. [PMID: 30776692] - Jamaludin Mohamad, Siti Saleha Masrudin, Zazali Alias, Nur Airina Muhamad. The effects of Pueraria mirifica extract, diadzein and genistein in testosterone-induced prostate hyperplasia in male Sprague Dawley rats.
Molecular biology reports.
2019 Apr; 46(2):1855-1871. doi:
10.1007/s11033-019-04638-5
. [PMID: 30710233] - Ludmila Křížová, Kateřina Dadáková, Jitka Kašparovská, Tomáš Kašparovský. Isoflavones.
Molecules (Basel, Switzerland).
2019 Mar; 24(6):. doi:
10.3390/molecules24061076
. [PMID: 30893792] - Aditi Wagle, Su Hui Seong, Hyun Ah Jung, Jae Sue Choi. Identifying an isoflavone from the root of Pueraria lobata as a potent tyrosinase inhibitor.
Food chemistry.
2019 Mar; 276(?):383-389. doi:
10.1016/j.foodchem.2018.10.008
. [PMID: 30409609] - Liang Lv, Caili Fu, Fang Zhang, Shaoyun Wang. Thermally-induced whey protein isolate-daidzein co-assemblies: Protein-based nanocomplexes as an inhibitor of precipitation/crystallization for hydrophobic drug.
Food chemistry.
2019 Mar; 275(?):273-281. doi:
10.1016/j.foodchem.2018.09.057
. [PMID: 30724197]