4-[[1-[[1-[[5-(diaminomethylideneamino)-1-[[1-[[5-[formyl(hydroxy)amino]-1-[[9-[3-[formyl(hydroxy)amino]propyl]-3,6-bis(1-hydroxyethyl)-2,5,8,11-tetraoxo-1,4,7,10-tetrazacyclohexadec-12-yl]amino]-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]-8,9-dihydroxy-2,3,4,4a-tetrahydro-1H-pyrimido[1,2-a]quinolin-5-yl]amino]-4-oxobutanoic acid (BioDeep_00000929604)

   


代谢物信息卡片


4-[[1-[[1-[[5-(diaminomethylideneamino)-1-[[1-[[5-[formyl(hydroxy)amino]-1-[[9-[3-[formyl(hydroxy)amino]propyl]-3,6-bis(1-hydroxyethyl)-2,5,8,11-tetraoxo-1,4,7,10-tetrazacyclohexadec-12-yl]amino]-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]-8,9-dihydroxy-2,3,4,4a-tetrahydro-1H-pyrimido[1,2-a]quinolin-5-yl]amino]-4-oxobutanoic acid

化学式: C55H85N17O22 (1335.605479)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C1C(=O)NC(C(=O)NCCCCC(C(=O)NC(C(=O)N1)CCCN(C=O)O)NC(=O)C(CCCN(C=O)O)NC(=O)C(CO)NC(=O)C(CCCN=C(N)N)NC(=O)C(CO)NC(=O)C2CCNC3N2C4=CC(=C(C=C4C=C3NC(=O)CCC(=O)O)O)O)C(C)O)O
InChI: InChI=1S/C55H85N17O22/c1-27(77)43-53(91)59-15-4-3-8-30(46(84)63-33(11-7-19-71(94)26-76)49(87)68-44(28(2)78)54(92)69-43)62-47(85)32(10-6-18-70(93)25-75)65-50(88)35(23-73)66-48(86)31(9-5-16-60-55(56)57)64-51(89)36(24-74)67-52(90)37-14-17-58-45-34(61-41(81)12-13-42(82)83)20-29-21-39(79)40(80)22-38(29)72(37)45/h20-22,25-28,30-33,35-37,43-45,58,73-74,77-80,93-94H,3-19,23-24H2,1-2H3,(H,59,91)(H,61,81)(H,62,85)(H,63,84)(H,64,89)(H,65,88)(H,66,86)(H,67,90)(H,68,87)(H,69,92)(H,82,83)(H4,56,57,60)



数据库引用编号

1 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Shixue Mei, Wanping Bian, Aijiang Yang, Peng Xu, Xiaoli Qian, Linping Yang, Xianrong Shi, Aping Niu. The highly effective cadmium-resistant mechanism of Pseudomonas aeruginosa and the function of pyoverdine induced by cadmium. Journal of hazardous materials. 2024 May; 469(?):133876. doi: 10.1016/j.jhazmat.2024.133876. [PMID: 38428299]
  • Sylwia Jafra, Magdalena Jabłońska, Tomasz Maciąg, Marta Matuszewska, Marcin Borowicz, Michał Prusiński, Wioletta Żmudzińska, Marcel Thiel, Paulina Czaplewska, Dorota M Krzyżanowska, Robert Czajkowski. An iron fist in a velvet glove: The cooperation of a novel pyoverdine from Pseudomonas donghuensis P482 with 7-hydroxytropolone is pivotal for its antibacterial activity. Environmental microbiology. 2024 Jan; 26(1):e16559. doi: 10.1111/1462-2920.16559. [PMID: 38151794]
  • Karoline Rehm, Vera Vollenweider, Rolf Kümmerli, Laurent Bigler. Pyoverdine Analysis - From High-resolution MS/MS Fragmentation to Ion Mobility Measurements. Chimia. 2023 Apr; 77(4):250-253. doi: 10.2533/chimia.2023.250. [PMID: 38047806]
  • Karoline Rehm, Vera Vollenweider, Rolf Kümmerli, Laurent Bigler. Rapid identification of pyoverdines of fluorescent Pseudomonas spp. by UHPLC-IM-MS. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine. 2023 02; 36(1):19-34. doi: 10.1007/s10534-022-00454-w. [PMID: 36261676]
  • Nannan Zhang, Jin Wu, Siping Zhang, Maoran Yuan, Hang Xu, Jie Li, Pingping Zhang, Mingzhu Wang, Megan L Kempher, Xuanyu Tao, Li-Qun Zhang, Honghua Ge, Yong-Xing He. Molecular basis for coordinating secondary metabolite production by bacterial and plant signaling molecules. The Journal of biological chemistry. 2022 06; 298(6):102027. doi: 10.1016/j.jbc.2022.102027. [PMID: 35568198]
  • Karoline Rehm, Vera Vollenweider, Rolf Kümmerli, Laurent Bigler. A comprehensive method to elucidate pyoverdines produced by fluorescent Pseudomonas spp. by UHPLC-HR-MS/MS. Analytical and bioanalytical chemistry. 2022 Mar; 414(8):2671-2685. doi: 10.1007/s00216-022-03907-w. [PMID: 35084507]
  • D'Incau Emmeline, Lépinay Alexandra, Capiaux Hervé, Gaudin Pierre, Cornu Jean-Yves, Lebeau Thierry. Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. The Science of the total environment. 2022 Feb; 809(?):152113. doi: 10.1016/j.scitotenv.2021.152113. [PMID: 34875330]
  • Youzhou Liu, Chen Dai, Yaqiu Zhou, Junqing Qiao, Bao Tang, Wenjie Yu, Rongshen Zhang, Yongfeng Liu, Shi-En Lu. Pyoverdines Are Essential for the Antibacterial Activity of Pseudomonas chlororaphis YL-1 under Low-Iron Conditions. Applied and environmental microbiology. 2021 03; 87(7):. doi: 10.1128/aem.02840-20. [PMID: 33452032]
  • Risa Maenaka, Shuji Tani, Yasufumi Hikichi, Kenji Kai. Actinomycins inhibit the production of the siderophore pyoverdines in the plant pathogen Pseudomonas cichorii SPC9018. Bioscience, biotechnology, and biochemistry. 2020 Oct; 84(10):1975-1985. doi: 10.1080/09168451.2020.1785839. [PMID: 32594848]
  • Oriol Daura-Pich, Iker Hernández, Lola Pinyol-Escala, Jose M Lara, Sonia Martínez-Servat, Carolina Fernández, Belén López-García. No antibiotic and toxic metabolites produced by the biocontrol agent Pseudomonas putida strain B2017. FEMS microbiology letters. 2020 05; 367(9):. doi: 10.1093/femsle/fnaa075. [PMID: 32347922]
  • Amanda Santos Kron, Veronika Zengerer, Marco Bieri, Vera Dreyfuss, Tanja Sostizzo, Michael Schmid, Matthias Lutz, Mitja N P Remus-Emsermann, Cosima Pelludat. Pseudomonas orientalis F9 Pyoverdine, Safracin, and Phenazine Mutants Remain Effective Antagonists against Erwinia amylovora in Apple Flowers. Applied and environmental microbiology. 2020 04; 86(8):. doi: 10.1128/aem.02620-19. [PMID: 32033956]
  • Qing Wei, Pramod Bhasme, Zhiguo Wang, Li Wang, Shiwei Wang, Yunfei Zeng, Yi Wang, Luyan Z Ma, Yan Li. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. Journal of ethnopharmacology. 2020 Feb; 248(?):112272. doi: 10.1016/j.jep.2019.112272. [PMID: 31586695]
  • Laura Barrientos-Moreno, María Antonia Molina-Henares, Marta Pastor-García, María Isabel Ramos-González, Manuel Espinosa-Urgel. Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. Journal of bacteriology. 2019 11; 201(22):. doi: 10.1128/jb.00454-19. [PMID: 31451546]
  • Konstanze T Schiessl, Adin Ross-Gillespie, Daniel M Cornforth, Michael Weigert, Colette Bigosch, Sam P Brown, Martin Ackermann, Rolf Kümmerli. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution; international journal of organic evolution. 2019 04; 73(4):675-688. doi: 10.1111/evo.13701. [PMID: 30793292]
  • Faizan Abul Qais, Mohammad Shavez Khan, Iqbal Ahmad. Broad-spectrum quorum sensing and biofilm inhibition by green tea against gram-negative pathogenic bacteria: Deciphering the role of phytocompounds through molecular modelling. Microbial pathogenesis. 2019 Jan; 126(?):379-392. doi: 10.1016/j.micpath.2018.11.030. [PMID: 30476580]
  • Elena Butaitė, Jos Kramer, Stefan Wyder, Rolf Kümmerli. Environmental determinants of pyoverdine production, exploitation and competition in natural Pseudomonas communities. Environmental microbiology. 2018 10; 20(10):3629-3642. doi: 10.1111/1462-2920.14355. [PMID: 30003663]
  • Alice Hazotte, Olivier Péron, Pierre Gaudin, Abdesselam Abdelouas, Thierry Lebeau. Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics. Environmental science and pollution research international. 2018 Jul; 25(21):20680-20690. doi: 10.1007/s11356-018-1974-6. [PMID: 29752674]
  • Michael T Ringel, Gerald Dräger, Thomas Brüser. The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid. The Journal of biological chemistry. 2017 11; 292(45):18660-18671. doi: 10.1074/jbc.m117.812545. [PMID: 28912270]
  • Elisa T Granato, Rolf Kümmerli. The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa. BMC evolutionary biology. 2017 Sep; 17(1):214. doi: 10.1186/s12862-017-1060-6. [PMID: 28893176]
  • Viviane Antonietti, Stéphanie Boudesocque, Laurent Dupont, Natacha Farvacques, Christine Cézard, Sophie Da Nascimento, Jean-François Raimbert, Larissa Socrier, Thierry-Johann Robin, Sandrine Morandat, Karim El Kirat, Catherine Mullié, Pascal Sonnet. Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs. European journal of medicinal chemistry. 2017 Sep; 137(?):338-350. doi: 10.1016/j.ejmech.2017.06.010. [PMID: 28614758]
  • Elena Butaitė, Michael Baumgartner, Stefan Wyder, Rolf Kümmerli. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nature communications. 2017 09; 8(1):414. doi: 10.1038/s41467-017-00509-4. [PMID: 28871205]
  • D Joseph Sexton, Rochelle C Glover, Joyce E Loper, Martin Schuster. Pseudomonas protegens Pf-5 favours self-produced siderophore over free-loading in interspecies competition for iron. Environmental microbiology. 2017 09; 19(9):3514-3525. doi: 10.1111/1462-2920.13836. [PMID: 28631403]
  • Michael Weigert, Rolf Kümmerli. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proceedings. Biological sciences. 2017 Jul; 284(1858):. doi: 10.1098/rspb.2017.0631. [PMID: 28701557]
  • Rongqin Ma, Yi Cao, Zhiqiang Cheng, Shaonan Lei, Wei Huang, Xin Li, Yongkang Song, Baoyu Tian. Identification and genomic analysis of antifungal property of a tomato root endophyte Pseudomonas sp. p21. Antonie van Leeuwenhoek. 2017 Mar; 110(3):387-397. doi: 10.1007/s10482-016-0811-5. [PMID: 28000056]
  • Siobhán O'Brien, David Williams, Joanne L Fothergill, Steve Paterson, Craig Winstanley, Michael A Brockhurst. High virulence sub-populations in Pseudomonas aeruginosa long-term cystic fibrosis airway infections. BMC microbiology. 2017 Feb; 17(1):30. doi: 10.1186/s12866-017-0941-6. [PMID: 28158967]
  • Tomaž Rijavec, Aleš Lapanje. Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants. Microbiological research. 2017 Jan; 194(?):20-28. doi: 10.1016/j.micres.2016.09.001. [PMID: 27938859]
  • Wen-Jen Chen, Tzu-Yen Kuo, Feng-Chia Hsieh, Pi-Yu Chen, Chang-Sheng Wang, Yu-Ling Shih, Ying-Mi Lai, Je-Ruei Liu, Yu-Liang Yang, Ming-Che Shih. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Scientific reports. 2016 09; 6(?):32950. doi: 10.1038/srep32950. [PMID: 27605490]
  • Pauline Trapet, Laure Avoscan, Agnès Klinguer, Stéphanie Pateyron, Sylvie Citerne, Christian Chervin, Sylvie Mazurier, Philippe Lemanceau, David Wendehenne, Angélique Besson-Bard. The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions. Plant physiology. 2016 05; 171(1):675-93. doi: 10.1104/pp.15.01537. [PMID: 26956666]
  • R F Inglis, J M Biernaskie, A Gardner, R Kümmerli. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities. Proceedings. Biological sciences. 2016 Jan; 283(1822):. doi: 10.1098/rspb.2015.2682. [PMID: 26763707]
  • Tiyakhon Chatnaparat, Zhong Li, Schuyler S Korban, Youfu Zhao. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environmental microbiology. 2015 Nov; 17(11):4253-70. doi: 10.1111/1462-2920.12744. [PMID: 25626964]
  • M Mercedes Maldonado-González, Elisabetta Schilirò, Pilar Prieto, Jesús Mercado-Blanco. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environmental microbiology. 2015 Sep; 17(9):3139-53. doi: 10.1111/1462-2920.12725. [PMID: 25471384]
  • Tiyakhon Chatnaparat, Zhong Li, Schuyler S Korban, Youfu Zhao. The Stringent Response Mediated by (p)ppGpp Is Required for Virulence of Pseudomonas syringae pv. tomato and Its Survival on Tomato. Molecular plant-microbe interactions : MPMI. 2015 Jul; 28(7):776-89. doi: 10.1094/mpmi-11-14-0378-r. [PMID: 25675257]
  • Ehsan Sepahi, Saeed Tarighi, Farajollah Shahriari Ahmadi, Abdolreza Bagheri. Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family. Journal of microbiology (Seoul, Korea). 2015 Feb; 53(2):176-80. doi: 10.1007/s12275-015-4203-8. [PMID: 25564444]
  • C Ferret, J Y Cornu, M Elhabiri, T Sterckeman, A Braud, K Jezequel, M Lollier, T Lebeau, I J Schalk, V A Geoffroy. Effect of pyoverdine supply on cadmium and nickel complexation and phytoavailability in hydroponics. Environmental science and pollution research international. 2015 Feb; 22(3):2106-16. doi: 10.1007/s11356-014-3487-2. [PMID: 25167822]
  • A Ross-Gillespie, Z Dumas, R Kümmerli. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. Journal of evolutionary biology. 2015 Jan; 28(1):29-39. doi: 10.1111/jeb.12559. [PMID: 25421271]
  • Sean Yang-Yi Tan, Yang Liu, Song Lin Chua, Rebecca Munk Vejborg, Tim Holm Jakobsen, Su Chuen Chew, Yingying Li, Thomas E Nielsen, Tim Tolker-Nielsen, Liang Yang, Michael Givskov. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2014 Nov; 58(11):6648-59. doi: 10.1128/aac.02620-13. [PMID: 25155599]
  • Ratul Sarkar, Sushil K Chaudhary, Amrita Sharma, Kirendra K Yadav, Neelesh K Nema, Mamello Sekhoacha, Sanmoy Karmakar, Fernão C Braga, Motlalepula Gilbert Matsabisa, Pulok K Mukherjee, Tuhinadri Sen. Anti-biofilm activity of Marula - a study with the standardized bark extract. Journal of ethnopharmacology. 2014 May; 154(1):170-5. doi: 10.1016/j.jep.2014.03.067. [PMID: 24742751]
  • J Y Cornu, M Elhabiri, C Ferret, V A Geoffroy, K Jezequel, Y Leva, M Lollier, I J Schalk, T Lebeau. Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Chemosphere. 2014 May; 103(?):212-9. doi: 10.1016/j.chemosphere.2013.11.070. [PMID: 24359916]
  • Lumeng Ye, Falk Hildebrand, Jozef Dingemans, Steven Ballet, George Laus, Sandra Matthijs, Roeland Berendsen, Pierre Cornelis. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PloS one. 2014; 9(11):e110038. doi: 10.1371/journal.pone.0110038. [PMID: 25369289]
  • Audrey Dagorn, Annelise Chapalain, Lily Mijouin, Mélanie Hillion, Cécile Duclairoir-Poc, Sylvie Chevalier, Laure Taupin, Nicole Orange, Marc G J Feuilloley. Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity. International journal of molecular sciences. 2013 Jun; 14(6):12186-204. doi: 10.3390/ijms140612186. [PMID: 23743829]
  • Sierra L Hartney, Sylvie Mazurier, Maëva K Girard, Samina Mehnaz, Edward W Davis, Harald Gross, Philippe Lemanceau, Joyce E Loper. Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5. Journal of bacteriology. 2013 Feb; 195(4):765-76. doi: 10.1128/jb.01639-12. [PMID: 23222724]
  • Christian O Dimkpa, Joan E McLean, David W Britt, Anne J Anderson. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology. 2012 Sep; 6(6):635-42. doi: 10.3109/17435390.2011.598246. [PMID: 21740347]
  • Hye Suk Kong, Daniel P Roberts, Cheryl D Patterson, Sarah A Kuehne, Stephan Heeb, Dilip K Lakshman, John Lydon. Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. Phytopathology. 2012 Jun; 102(6):575-87. doi: 10.1094/phyto-09-11-0267. [PMID: 22568815]
  • Jeremy G Owen, David F Ackerley. Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC microbiology. 2011 Oct; 11(?):218. doi: 10.1186/1471-2180-11-218. [PMID: 21967163]
  • Jana Goldová, Aleš Ulrych, Kamil Hercík, Pavel Branny. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC genomics. 2011 Aug; 12(?):437. doi: 10.1186/1471-2164-12-437. [PMID: 21880152]
  • Alexander M Jones, Mary C Wildermuth. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. Journal of bacteriology. 2011 Jun; 193(11):2767-75. doi: 10.1128/jb.00069-10. [PMID: 21441525]
  • Misagh Alipour, Abdelwahab Omri, Zacharias E Suntres. Ginseng aqueous extract attenuates the production of virulence factors, stimulates twitching and adhesion, and eradicates biofilms of Pseudomonas aeruginosa. Canadian journal of physiology and pharmacology. 2011 Jun; 89(6):419-27. doi: 10.1139/y11-057. [PMID: 21815782]
  • Sierra L Hartney, Sylvie Mazurier, Teresa A Kidarsa, Maria Carolina Quecine, Philippe Lemanceau, Joyce E Loper. TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine. 2011 Apr; 24(2):193-213. doi: 10.1007/s10534-010-9385-2. [PMID: 21080032]
  • Neeraja Vajrala, Luis A Sayavedra-Soto, Peter J Bottomley, Daniel J Arp. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes. Archives of microbiology. 2010 Nov; 192(11):899-908. doi: 10.1007/s00203-010-0620-6. [PMID: 20737137]
  • Glenn F J Dulla, Ksenia V Krasileva, Steven E Lindow. Interference of quorum sensing in Pseudomonas syringae by bacterial epiphytes that limit iron availability. Environmental microbiology. 2010 Jun; 12(6):1762-74. doi: 10.1111/j.1462-2920.2010.02261.x. [PMID: 20553555]
  • Pierre Cornelis. Iron uptake and metabolism in pseudomonads. Applied microbiology and biotechnology. 2010 May; 86(6):1637-45. doi: 10.1007/s00253-010-2550-2. [PMID: 20352420]
  • Annette Wensing, Sascha D Braun, Petra Büttner, Dominique Expert, Beate Völksch, Matthias S Ullrich, Helge Weingart. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Applied and environmental microbiology. 2010 May; 76(9):2704-11. doi: 10.1128/aem.02979-09. [PMID: 20208028]
  • Pol Nadal Jimenez, Gudrun Koch, Evelina Papaioannou, Mariana Wahjudi, Joanna Krzeslak, Tom Coenye, Robbert H Cool, Wim J Quax. Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology (Reading, England). 2010 Jan; 156(Pt 1):49-59. doi: 10.1099/mic.0.030973-0. [PMID: 19778968]
  • Fumiko Taguchi, Tomoko Suzuki, Yoshishige Inagaki, Kazuhiro Toyoda, Tomonori Shiraishi, Yuki Ichinose. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. Journal of bacteriology. 2010 Jan; 192(1):117-26. doi: 10.1128/jb.00689-09. [PMID: 19854904]
  • Bryan Swingle, Deepti Thete, Monica Moll, Christopher R Myers, David J Schneider, Samuel Cartinhour. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Molecular microbiology. 2008 May; 68(4):871-89. doi: 10.1111/j.1365-2958.2008.06209.x. [PMID: 18363796]
  • Pierre Cornelis. The 'core' and 'accessory' regulons of Pseudomonas-specific extracytoplasmic sigma factors. Molecular microbiology. 2008 May; 68(4):810-2. doi: 10.1111/j.1365-2958.2008.06223.x. [PMID: 18430079]
  • Christina D Moon, Xue-Xian Zhang, Sandra Matthijs, Mathias Schäfer, Herbert Budzikiewicz, Paul B Rainey. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC microbiology. 2008 Jan; 8(?):7. doi: 10.1186/1471-2180-8-7. [PMID: 18194565]
  • Jean-Marie Meyer, Christelle Gruffaz, Topi Tulkki, Daniel Izard. Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. International journal of systematic and evolutionary microbiology. 2007 Nov; 57(Pt 11):2543-2556. doi: 10.1099/ijs.0.65233-0. [PMID: 17978216]
  • Alexander M Jones, Steven E Lindow, Mary C Wildermuth. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. Journal of bacteriology. 2007 Oct; 189(19):6773-86. doi: 10.1128/jb.00827-07. [PMID: 17660289]
  • Dimitris Mossialos, Grigoris D Amoutzias. Siderophores in fluorescent pseudomonads: new tricks from an old dog. Future microbiology. 2007 Aug; 2(4):387-95. doi: 10.2217/17460913.2.4.387. [PMID: 17683275]
  • Agnès Robin, Sylvie Mazurier, Christophe Mougel, Gérard Vansuyt, Thérèse Corberand, Jean-Marie Meyer, Philippe Lemanceau. Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environmental microbiology. 2007 Jul; 9(7):1724-37. doi: 10.1111/j.1462-2920.2007.01290.x. [PMID: 17564606]
  • Gérard Vansuyt, Agnès Robin, Jean-François Briat, Catherine Curie, Philippe Lemanceau. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Molecular plant-microbe interactions : MPMI. 2007 Apr; 20(4):441-7. doi: 10.1094/mpmi-20-4-0441. [PMID: 17427814]
  • Piyush Pandey, Sun C Kang, Chandra P Gupta, Dinesh K Maheshwari. Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Current microbiology. 2005 Nov; 51(5):303-9. doi: 10.1007/s00284-005-0014-1. [PMID: 16211433]
  • Marc Ongena, Emmanuel Jourdan, Mathias Schäfer, Cécile Kech, Herbert Budzikiewicz, André Luxen, Philippe Thonart. Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Molecular plant-microbe interactions : MPMI. 2005 Jun; 18(6):562-9. doi: 10.1094/mpmi-18-0562. [PMID: 15986926]
  • Alain Bultreys, Isabelle Gheysen, Bernard Wathelet, Henri Maraite, Edmond de Hoffmann. High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas Species. Applied and environmental microbiology. 2003 Feb; 69(2):1143-53. doi: 10.1128/aem.69.2.1143-1153.2003. [PMID: 12571041]
  • Blanca B Landa, Juana M Cachinero-Díaz, Philippe Lemanceau, Rafael M Jiménez-Díaz, Claude Alabouvette. Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Canadian journal of microbiology. 2002 Nov; 48(11):971-85. doi: 10.1139/w02-094. [PMID: 12556125]
  • H P Deka Boruah, B S Dileep Kumar. Biological activity of secondary metabolites produced by a strain of Pseudomonas fluorescens. Folia microbiologica. 2002; 47(4):359-63. doi: 10.1007/bf02818690. [PMID: 12422510]
  • M Jülich, K Taraz, H Budzikiewicz, V Geoffroy, J M Meyer, L Gardan. The structure of the pyoverdin isolated from various Pseudomonas syringae pathovars. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2001 Sep; 56(9-10):687-94. doi: 10.1515/znc-2001-9-1003. [PMID: 11724369]
  • P Mirleau, L Philippot, T Corberand, P Lemanceau. Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Applied and environmental microbiology. 2001 Jun; 67(6):2627-35. doi: 10.1128/aem.67.6.2627-2635.2001. [PMID: 11375173]
  • J E Loper, M D Henkels. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and environmental microbiology. 1999 Dec; 65(12):5357-63. doi: 10.1128/aem.65.12.5357-5363.1999. [PMID: 10583989]
  • A Gaballa, C Baysse, N Koedam, S Muyldermans, P Cornelis. Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Molecular microbiology. 1998 Nov; 30(3):547-55. doi: 10.1046/j.1365-2958.1998.01085.x. [PMID: 9822820]
  • I Morel, O Sergent, P Cogrel, G Lescoat, N Pasdeloup, P Brissot, P Cillard, J Cillard. EPR study of antioxidant activity of the iron chelators pyoverdin and hydroxypyrid-4-one in iron-loaded hepatocyte culture: comparison with that of desferrioxamine. Free radical biology & medicine. 1995 Feb; 18(2):303-10. doi: 10.1016/0891-5849(94)e0144-8. [PMID: 7744315]
  • I Morel, J Cillard, G Lescoat, O Sergent, N Pasdeloup, A Z Ocaktan, M A Abdallah, P Brissot, P Cillard. Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures: comparison of their mechanism of protection with that of desferrioxamine. Free radical biology & medicine. 1992 Nov; 13(5):499-508. doi: 10.1016/0891-5849(92)90144-6. [PMID: 1334028]
  • I T Rombel, I L Lamont. DNA homology between siderophore genes from fluorescent pseudomonads. Journal of general microbiology. 1992 Jan; 138(1):181-7. doi: 10.1099/00221287-138-1-181. [PMID: 1532617]
  • H Hamdan, D M Weller, L S Thomashow. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Applied and environmental microbiology. 1991 Nov; 57(11):3270-7. doi: 10.1128/aem.57.11.3270-3277.1991. [PMID: 1838240]
  • Y S Cody, D C Gross. Outer membrane protein mediating iron uptake via pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae. Journal of bacteriology. 1987 May; 169(5):2207-14. doi: 10.1128/jb.169.5.2207-2214.1987. [PMID: 3032911]