Hexanamide, N-(2-hydroxy-1-(hydroxymethyl)-3-heptadecenyl)-6-((7-nitro-4-benzofurazanyl)amino)- (BioDeep_00000912201)

   


代谢物信息卡片


Hexanamide, N-(2-hydroxy-1-(hydroxymethyl)-3-heptadecenyl)-6-((7-nitro-4-benzofurazanyl)amino)-

化学式: C30H49N5O6 (575.3682654)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCCCCCCCC=CC(C(CO)NC(=O)CCCCCNC1=CC=C(C2=NON=C12)[N+](=O)[O-])O
InChI: InChI=1S/C30H49N5O6/c1-2-3-4-5-6-7-8-9-10-11-12-13-15-18-27(37)25(23-36)32-28(38)19-16-14-17-22-31-24-20-21-26(35(39)40)30-29(24)33-41-34-30/h15,18,20-21,25,27,31,36-37H,2-14,16-17,19,22-23H2,1H3,(H,32,38)/b18-15+

描述信息

D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents
D004396 - Coloring Agents > D005456 - Fluorescent Dyes

同义名列表

1 个代谢物同义名

Hexanamide, N-(2-hydroxy-1-(hydroxymethyl)-3-heptadecenyl)-6-((7-nitro-4-benzofurazanyl)amino)-



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Takuya Honda, Kaisei Motoyoshi, Junya Kasahara, Kazuyuki Yamagata, Hiromasa Takahashi, Hiroyuki Nakamura, Toshihiko Murayama. Tyrosine-phosphorylation and activation of glucosylceramide synthase by v-Src: Its role in survival of HeLa cells against ceramide. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2021 01; 1866(1):158817. doi: 10.1016/j.bbalip.2020.158817. [PMID: 32980536]
  • Mariana Nikolova-Karakashian. Methods to Characterize Synthesis and Degradation of Sphingomyelin at the Plasma Membrane and Its Impact on Lipid Raft Dynamics. Methods in molecular biology (Clifton, N.J.). 2021; 2187(?):113-129. doi: 10.1007/978-1-0716-0814-2_7. [PMID: 32770504]
  • Alireza Lajevardipour, James W M Chon, Amitabha Chattopadhyay, Andrew H A Clayton. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells. Scientific reports. 2016 11; 6(?):37038. doi: 10.1038/srep37038. [PMID: 27872481]
  • Rotem Tidhar, Kacee Sims, Eden Rosenfeld-Gur, Walter Shaw, Anthony H Futerman. A rapid ceramide synthase activity using NBD-sphinganine and solid phase extraction. Journal of lipid research. 2015 Jan; 56(1):193-9. doi: 10.1194/jlr.d052001. [PMID: 25368106]
  • Hua Wang, Wei Zhang, Jun Wan, Weiwei Liu, Bo Yu, Qinghui Jin, Ming Guan. Microchip-based human serum atherogenic lipoprotein profile analysis. Analytical biochemistry. 2014 Dec; 467(?):75-83. doi: 10.1016/j.ab.2014.08.031. [PMID: 25218022]
  • Taomin Huang, Xiaoxia Li, Shuang Hu, Bo Zhao, Ping Chen, Xiao Liu, Deyong Ye, Nengneng Cheng. Analysis of fluorescent ceramide and sphingomyelin analogs: a novel approach for in vivo monitoring of sphingomyelin synthase activity. Lipids. 2014 Oct; 49(10):1071-9. doi: 10.1007/s11745-014-3940-5. [PMID: 25108416]
  • Hirotsune Sasaki, Kaori Toyomura, Wataru Matsuzaki, Aya Okamoto, Naoto Yamaguchi, Hiroyuki Nakamura, Toshihiko Murayama. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. Archives of biochemistry and biophysics. 2014 May; 550-551(?):12-9. doi: 10.1016/j.abb.2014.03.012. [PMID: 24708996]
  • Natalia S Voynova, Christine Vionnet, Christer S Ejsing, Andreas Conzelmann. A novel pathway of ceramide metabolism in Saccharomyces cerevisiae. The Biochemical journal. 2012 Oct; 447(1):103-14. doi: 10.1042/bj20120712. [PMID: 22738231]
  • Brad Chazotte. Labeling Golgi with fluorescent ceramides. Cold Spring Harbor protocols. 2012 Aug; 2012(8):. doi: 10.1101/pdb.prot070599. [PMID: 22854569]
  • Wing-Kee Lee, Blazej Torchalski, Naschla Kohistani, Frank Thévenod. ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicological sciences : an official journal of the Society of Toxicology. 2011 Jun; 121(2):343-56. doi: 10.1093/toxsci/kfr071. [PMID: 21436125]
  • Vineet Gupta, Gauri A Patwardhan, Qian-Jin Zhang, Myles C Cabot, S Michal Jazwinski, Yong-Yu Liu. Direct quantitative determination of ceramide glycosylation in vivo: a new approach to evaluate cellular enzyme activity of glucosylceramide synthase. Journal of lipid research. 2010 Apr; 51(4):866-74. doi: 10.1194/jlr.d002949. [PMID: 19826105]
  • Damir T Alzhanov, Robert J Suchland, Antony C Bakke, Walter E Stamm, Daniel D Rockey. Clonal isolation of chlamydia-infected cells using flow cytometry. Journal of microbiological methods. 2007 Jan; 68(1):201-8. doi: 10.1016/j.mimet.2006.07.012. [PMID: 16997404]
  • Tatsuru Togo. Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. Journal of cell science. 2006 Jul; 119(Pt 13):2780-6. doi: 10.1242/jcs.03006. [PMID: 16772335]
  • Asami Makino, Kumiko Ishii, Motohide Murate, Tomohiro Hayakawa, Yusuke Suzuki, Minoru Suzuki, Kazuki Ito, Tetsuro Fujisawa, Hirotami Matsuo, Reiko Ishitsuka, Toshihide Kobayashi. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains. Biochemistry. 2006 Apr; 45(14):4530-41. doi: 10.1021/bi052104y. [PMID: 16584188]
  • Daniel G Milis, Messiah K Moore, Barbara P Atshaves, Friedhelm Schroeder, John R Jefferson. Sterol carrier protein-2 expression alters sphingolipid metabolism in transfected mouse L-cell fibroblasts. Molecular and cellular biochemistry. 2006 Feb; 283(1-2):57-66. doi: 10.1007/s11010-006-2270-1. [PMID: 16444586]
  • Diane M Welty, D Scott Snyder. Internalization of OspA in rsCD14 complex and aggregated forms. Molecular microbiology. 2003 Nov; 50(3):835-43. doi: 10.1046/j.1365-2958.2003.03769.x. [PMID: 14617145]
  • Boris Boyanovsky, Alexander Karakashian, Kelley King, Natalia Giltiay, Mariana Nikolova-Karakashian. Uptake and metabolism of low density lipoproteins with elevated ceramide content by human microvascular endothelial cells: implications for the regulation of apoptosis. The Journal of biological chemistry. 2003 Jul; 278(29):26992-9. doi: 10.1074/jbc.m301536200. [PMID: 12721293]
  • A Loidl, R Claus, H P Deigner, A Hermetter. High-precision fluorescence assay for sphingomyelinase activity of isolated enzymes and cell lysates. Journal of lipid research. 2002 May; 43(5):815-23. doi: 10.1016/s0022-2275(20)30124-3. [PMID: 11971953]
  • M Terasaki, L Loew, J Lippincott-Schwartz, K Zaal. Fluorescent staining of subcellular organelles: ER, Golgi complex, and mitochondria. Current protocols in cell biology. 2001 May; Chapter 4(?):Unit 4.4. doi: 10.1002/0471143030.cb0404s00. [PMID: 18228364]
  • E H Pap, T B Dansen, R van Summeren, K W Wirtz. Peptide-based targeting of fluorophores to organelles in living cells. Experimental cell research. 2001 May; 265(2):288-93. doi: 10.1006/excr.2001.5190. [PMID: 11302694]
  • C Zimmermann, I Ginis, K Furuya, D Klimanis, C Ruetzler, M Spatz, J M Hallenbeck. Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain research. 2001 Mar; 895(1-2):59-65. doi: 10.1016/s0006-8993(01)02028-5. [PMID: 11259760]
  • P Lala, S Ito, C A Lingwood. Retroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriaosylceramide and 10(5)- to 10(6)-fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. The Journal of biological chemistry. 2000 Mar; 275(9):6246-51. doi: 10.1074/jbc.275.9.6246. [PMID: 10692420]
  • D Allan. Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. The Biochemical journal. 2000 Feb; 345 Pt 3(?):603-10. doi: 10.1042/bj3450603. [PMID: 10642519]
  • C M Frijters, C J Tuijn, R Ottenhoff, B N Zegers, A K Groen, R P Elferink. The role of different P-glycoproteins in hepatobiliary secretion of fluorescently labeled short-chain phospholipids. Journal of lipid research. 1999 Nov; 40(11):1950-8. doi: 10.1016/s0022-2275(20)32418-4. [PMID: 10552998]
  • M D Ledesma, B Brügger, C Bünning, F T Wieland, C G Dotti. Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. The EMBO journal. 1999 Apr; 18(7):1761-71. doi: 10.1093/emboj/18.7.1761. [PMID: 10202140]
  • S Bourteele, A Hausser, H Döppler, J Horn-Müller, C Röpke, G Schwarzmann, K Pfizenmaier, G Müller. Tumor necrosis factor induces ceramide oscillations and negatively controls sphingolipid synthases by caspases in apoptotic Kym-1 cells. The Journal of biological chemistry. 1998 Nov; 273(47):31245-51. doi: 10.1074/jbc.273.47.31245. [PMID: 9813032]
  • P M Elias, C Cullander, T Mauro, U Rassner, L Kömüves, B E Brown, G K Menon. The secretory granular cell: the outermost granular cell as a specialized secretory cell. The journal of investigative dermatology. Symposium proceedings. 1998 Aug; 3(2):87-100. doi: 10.1038/jidsymp.1998.20. [PMID: 9734820]
  • M M Zegers, D Hoekstra. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells. The Journal of cell biology. 1997 Jul; 138(2):307-21. doi: 10.1083/jcb.138.2.307. [PMID: 9230073]
  • S Boldin, A H Futerman. Glucosylceramide synthesis is required for basic fibroblast growth factor and laminin to stimulate axonal growth. Journal of neurochemistry. 1997 Feb; 68(2):882-5. doi: 10.1046/j.1471-4159.1997.68020882.x. [PMID: 9003082]
  • G N Sando, E J Howard, K C Madison. Induction of ceramide glucosyltransferase activity in cultured human keratinocytes. Correlation with culture differentiation. The Journal of biological chemistry. 1996 Sep; 271(36):22044-51. doi: 10.1074/jbc.271.36.22044. [PMID: 8703011]
  • M A Scidmore, E R Fischer, T Hackstadt. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. The Journal of cell biology. 1996 Jul; 134(2):363-74. doi: 10.1083/jcb.134.2.363. [PMID: 8707822]
  • T Hackstadt, D D Rockey, R A Heinzen, M A Scidmore. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. The EMBO journal. 1996 Mar; 15(5):964-77. doi: 10.1002/j.1460-2075.1996.tb00433.x. [PMID: 8605892]
  • E J de Melo, W de Souza. Pathway of C6-NBD-Ceramide on the host cell infected with Toxoplasma gondii. Cell structure and function. 1996 Feb; 21(1):47-52. doi: 10.1247/csf.21.47. [PMID: 8726473]
  • T Hackstadt, M A Scidmore, D D Rockey. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proceedings of the National Academy of Sciences of the United States of America. 1995 May; 92(11):4877-81. doi: 10.1073/pnas.92.11.4877. [PMID: 7761416]
  • C Zurzolo, W van't Hof, G van Meer, E Rodriguez-Boulan. Glycosphingolipid clusters and the sorting of GPI-anchored proteins in epithelial cells. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 1994 Feb; 27(2):317-22. doi: NULL. [PMID: 7521706]
  • T Babia, J W Kok, C Hulstaert, H de Weerd, D Hoekstra. Differential metabolism and trafficking of sphingolipids in differentiated versus undifferentiated HT29 cells. International journal of cancer. 1993 Jul; 54(5):839-45. doi: 10.1002/ijc.2910540519. [PMID: 8325709]
  • O C Martin, M E Comly, E J Blanchette-Mackie, P G Pentchev, R E Pagano. Cholesterol deprivation affects the fluorescence properties of a ceramide analog at the Golgi apparatus of living cells. Proceedings of the National Academy of Sciences of the United States of America. 1993 Apr; 90(7):2661-5. doi: 10.1073/pnas.90.7.2661. [PMID: 8464873]
  • M Sugai, C H Chen, H C Wu. Bacterial ADP-ribosyltransferase with a substrate specificity of the rho protein disassembles the Golgi apparatus in Vero cells and mimics the action of brefeldin A. Proceedings of the National Academy of Sciences of the United States of America. 1992 Oct; 89(19):8903-7. doi: 10.1073/pnas.89.19.8903. [PMID: 1409583]
  • D Moffat, J R Kusel. Fluorescent lipid uptake and transport in adult Schistosoma mansoni. Parasitology. 1992 Aug; 105 ( Pt 1)(?):81-9. doi: 10.1017/s0031182000073716. [PMID: 1437279]
  • S Chandra, E P Kable, G H Morrison, W W Webb. Calcium sequestration in the Golgi apparatus of cultured mammalian cells revealed by laser scanning confocal microscopy and ion microscopy. Journal of cell science. 1991 Dec; 100 ( Pt 4)(?):747-52. doi: 10.1242/jcs.100.4.747. [PMID: 1814929]
  • K Hanada, M Horii, Y Akamatsu. Functional reconstitution of sphingomyelin synthase in Chinese hamster ovary cell membranes. Biochimica et biophysica acta. 1991 Nov; 1086(2):151-6. doi: 10.1016/0005-2760(91)90002-y. [PMID: 1657181]
  • S H Low, S H Wong, B L Tang, P Tan, V N Subramaniam, W Hong. Inhibition by brefeldin A of protein secretion from the apical cell surface of Madin-Darby canine kidney cells. The Journal of biological chemistry. 1991 Sep; 266(27):17729-32. doi: NULL. [PMID: 1917917]
  • H Robenek, G Schmitz. Abnormal processing of Golgi elements and lysosomes in Tangier disease. Arteriosclerosis and thrombosis : a journal of vascular biology. 1991 Jul; 11(4):1007-20. doi: 10.1161/01.atv.11.4.1007. [PMID: 2065025]
  • R E Pagano, O C Martin, H C Kang, R P Haugland. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. The Journal of cell biology. 1991 Jun; 113(6):1267-79. doi: 10.1083/jcb.113.6.1267. [PMID: 2045412]
  • J M Crawford, D W Vinter, J L Gollan. Taurocholate induces pericanalicular localization of C6-NBD-ceramide in isolated hepatocyte couplets. The American journal of physiology. 1991 Jan; 260(1 Pt 1):G119-32. doi: 10.1152/ajpgi.1991.260.1.g119. [PMID: 1987800]
  • R E Pagano. The Golgi apparatus: insights from lipid biochemistry. Biochemical Society transactions. 1990 Jun; 18(3):361-6. doi: 10.1042/bst0180361. [PMID: 2197129]
  • T Kreiner, H P Moore. Membrane traffic between secretory compartments is differentially affected during mitosis. Cell regulation. 1990 Apr; 1(5):415-24. doi: 10.1091/mbc.1.5.415. [PMID: 2099191]
  • R E Pagano, M A Sepanski, O C Martin. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. The Journal of cell biology. 1989 Nov; 109(5):2067-79. doi: 10.1083/jcb.109.5.2067. [PMID: 2478562]
  • W C Ho, V J Allan, G van Meer, E G Berger, T E Kreis. Reclustering of scattered Golgi elements occurs along microtubules. European journal of cell biology. 1989 Apr; 48(2):250-63. doi: ". [PMID: 2743999]
  • N G Lipsky, R E Pagano. A vital stain for the Golgi apparatus. Science (New York, N.Y.). 1985 May; 228(4700):745-7. doi: 10.1126/science.2581316. [PMID: 2581316]
  • N G Lipsky, R E Pagano. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proceedings of the National Academy of Sciences of the United States of America. 1983 May; 80(9):2608-12. doi: 10.1073/pnas.80.9.2608. [PMID: 6573674]