10-Formyltetrahydropteroylglutamic acid (BioDeep_00000910926)

   

PANOMIX_OTCML-2023


代谢物信息卡片


10-Formyltetrahydropteroylglutamic acid

化学式: C20H23N7O7 (473.1659)
中文名称:
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 83.33%

分子结构信息

SMILES: C1C(NC2=C(N1)N=C(NC2=O)N)CN(C=O)C3=CC=C(C=C3)C(=O)NC(CCC(=O)O)C(=O)O
InChI: InChI=1S/C20H23N7O7/c21-20-25-16-15(18(32)26-20)23-11(7-22-16)8-27(9-28)12-3-1-10(2-4-12)17(31)24-13(19(33)34)5-6-14(29)30/h1-4,9,11,13,23H,5-8H2,(H,24,31)(H,29,30)(H,33,34)(H4,21,22,25,26,32)/t11?,13-/m0/s1

描述信息

COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

2 个代谢物同义名

10-Formyltetrahydropteroylglutamic acid; 10-Formyltetrahydrofolate



数据库引用编号

5 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(2)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Ajana Pathikkal, Bijesh Puthusseri, Peethambaran Divya, Sudha Rudrappa, Vikas Singh Chauhan. Folate derivatives, 5-methyltetrahydrofolate and 10-formyltetrahydrofolate, protect BEAS-2B cells from high glucose-induced oxidative stress and inflammation. In vitro cellular & developmental biology. Animal. 2022 May; 58(5):419-428. doi: 10.1007/s11626-022-00691-w. [PMID: 35678985]
  • Shaimaa M Sallam, Eman Shawky, Samah M El Sohafy. Determination of the effect of germination on the folate content of the seeds of some legumes using HPTLC-mass spectrometry-multivariate image analysis. Food chemistry. 2021 Nov; 362(?):130206. doi: 10.1016/j.foodchem.2021.130206. [PMID: 34082289]
  • Natalia I Krupenko, Jaspreet Sharma, Peter Pediaditakis, Kristi L Helke, Madeline S Hall, Xiuxia Du, Susan Sumner, Sergey A Krupenko. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Human genomics. 2020 11; 14(1):41. doi: 10.1186/s40246-020-00291-3. [PMID: 33168096]
  • Aamod S Dekhne, Changwen Ning, Md Junayed Nayeen, Khushbu Shah, Hasini Kalpage, Josephine Frühauf, Adrianne Wallace-Povirk, Carrie O'Connor, Zhanjun Hou, Seongho Kim, Maik Hüttemann, Aleem Gangjee, Larry H Matherly. Cellular Pharmacodynamics of a Novel Pyrrolo[3,2-d]pyrimidine Inhibitor Targeting Mitochondrial and Cytosolic One-Carbon Metabolism. Molecular pharmacology. 2020 01; 97(1):9-22. doi: 10.1124/mol.119.117937. [PMID: 31707355]
  • K E Christensen, L Deng, K Y Leung, E Arning, T Bottiglieri, O V Malysheva, M A Caudill, N I Krupenko, N D Greene, L Jerome-Majewska, R E MacKenzie, R Rozen. A novel mouse model for genetic variation in 10-formyltetrahydrofolate synthetase exhibits disturbed purine synthesis with impacts on pregnancy and embryonic development. Human molecular genetics. 2013 Sep; 22(18):3705-19. doi: 10.1093/hmg/ddt223. [PMID: 23704330]
  • Aymeric Goyer, Eva Collakova, Rocío Díaz de la Garza, Eoin P Quinlivan, Jerry Williamson, Jesse F Gregory, Yair Shachar-Hill, Andrew D Hanson. 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. The Journal of biological chemistry. 2005 Jul; 280(28):26137-42. doi: 10.1074/jbc.m503106200. [PMID: 15888445]
  • J E Baggott, C B Robinson, K E Johnston. Bioactivity of [6R]-5-formyltetrahydrofolate, an unusual isomer, in humans and Enterococcus hirae, and cytochrome c oxidation of 10-formytetrahydrofolate to 10-formyldihydrofolate. The Biochemical journal. 2001 Feb; 354(Pt 1):115-22. doi: 10.1042/0264-6021:3540115. [PMID: 11171086]
  • L. Chen, S. Y. Chan, E. A. Cossins. Distribution of Folate Derivatives and Enzymes for Synthesis of 10-Formyltetrahydrofolate in Cytosolic and Mitochondrial Fractions of Pea Leaves. Plant physiology. 1997 Sep; 115(1):299-309. doi: 10.1104/pp.115.1.299. [PMID: 12223808]
  • J E Baggott, G L Johanning, K E Branham, C W Prince, S L Morgan, I Eto, W H Vaughn. Cofactor role for 10-formyldihydrofolic acid. The Biochemical journal. 1995 Jun; 308 ( Pt 3)(?):1031-6. doi: 10.1042/bj3081031. [PMID: 8948466]
  • J C Schmitz, R K Stuart, D G Priest. Disposition of folic acid and its metabolites: a comparison with leucovorin. Clinical pharmacology and therapeutics. 1994 May; 55(5):501-8. doi: 10.1038/clpt.1994.63. [PMID: 8181194]
  • J A Houghton, L G Williams, S K Loftin, P J Cheshire, C L Morton, P J Houghton, A Dayan, J Jolivet. Factors that influence the therapeutic activity of 5-fluorouracil [6RS]leucovorin combinations in colon adenocarcinoma xenografts. Cancer chemotherapy and pharmacology. 1992; 30(6):423-32. doi: 10.1007/bf00685592. [PMID: 1394798]
  • D G Priest, J C Schmitz, M A Bunni, R K Stuart. Pharmacokinetics of leucovorin metabolites in human plasma as a function of dose administered orally and intravenously. Journal of the National Cancer Institute. 1991 Dec; 83(24):1806-12. doi: 10.1093/jnci/83.24.1806. [PMID: 1744924]