7-[(2R,3R,4S,5R)-3-hydroxy-5-methoxy-6,6-dimethyl-4-(5-methyl-1H-pyrrole-2-carbonyl)oxyoxan-2-yl]oxy-3-[[5-[[7-[(2R,3R,4S,5R)-3-hydroxy-5-methoxy-6,6-dimethyl-4-(5-methyl-1H-pyrrole-2-carbonyl)oxyoxan-2-yl]oxy-8-methyl-4-oxido-2-oxochromen-3-yl]carbamoyl]-4-methyl-1H-pyrrole-3-carbonyl]amino]-8-methyl-2-oxochromen-4-olate (BioDeep_00000907012)

   


代谢物信息卡片


7-[(2R,3R,4S,5R)-3-hydroxy-5-methoxy-6,6-dimethyl-4-(5-methyl-1H-pyrrole-2-carbonyl)oxyoxan-2-yl]oxy-3-[[5-[[7-[(2R,3R,4S,5R)-3-hydroxy-5-methoxy-6,6-dimethyl-4-(5-methyl-1H-pyrrole-2-carbonyl)oxyoxan-2-yl]oxy-8-methyl-4-oxido-2-oxochromen-3-yl]carbamoyl]-4-methyl-1H-pyrrole-3-carbonyl]amino]-8-methyl-2-oxochromen-4-olate

化学式: C55H57N5O20-2 (1107.3597)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=CC=C(N1)C(=O)OC2C(C(OC(C2OC)(C)C)OC3=C(C4=C(C=C3)C(=C(C(=O)O4)NC(=O)C5=CNC(=C5C)C(=O)NC6=C(C7=C(C(=C(C=C7)OC8C(C(C(C(O8)(C)C)OC)OC(=O)C9=CC=C(N9)C)O)C)OC6=O)[O-])[O-])C)O
InChI: InChI=1S/C55H59N5O20/c1-21-12-16-29(57-21)48(67)77-42-38(63)52(79-54(6,7)44(42)71-10)73-31-18-14-26-36(61)34(50(69)75-40(26)24(31)4)59-46(65)28-20-56-33(23(28)3)47(66)60-35-37(62)27-15-19-32(25(5)41(27)76-51(35)70)74-53-39(64)43(45(72-11)55(8,9)80-53)78-49(68)30-17-13-22(2)58-30/h12-20,38-39,42-45,52-53,56-58,61-64H,1-11H3,(H,59,65)(H,60,66)/p-2/t38-,39-,42+,43+,44-,45-,52-,53-/m1/s1



数据库引用编号

1 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Ken Shiozawa, Mikio Oka, Hiroshi Soda, Megumi Yoshikawa, Yoji Ikegami, Junji Tsurutani, Katsumi Nakatomi, Yoichi Nakamura, Seiji Doi, Takeshi Kitazaki, Yohei Mizuta, Kunihiko Murase, Hisahiro Yoshida, Douglas D Ross, Shigeru Kohno. Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. International journal of cancer. 2004 Jan; 108(1):146-51. doi: 10.1002/ijc.11528. [PMID: 14618629]
  • Christine A Goetz, Jennifer J O'Neil, Michael A Farrar. Membrane localization, oligomerization, and phosphorylation are required for optimal raf activation. The Journal of biological chemistry. 2003 Dec; 278(51):51184-9. doi: 10.1074/jbc.m309183200. [PMID: 14530258]
  • T B Stanton, E G Matson, S B Humphrey. Brachyspira (Serpulina) hyodysenteriae gyrB mutants and interstrain transfer of coumermycin A(1) resistance. Applied and environmental microbiology. 2001 May; 67(5):2037-43. doi: 10.1128/aem.67.5.2037-2043.2001. [PMID: 11319078]
  • M A Farrar, J Alberol-Ila, R M Perlmutter. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature. 1996 Sep; 383(6596):178-81. doi: 10.1038/383178a0. [PMID: 8774884]
  • J Niu, Y Wang, R Dixon, S Bowden, M Qiao, L Einck, S Locarnini. The use of ampligen alone and in combination with ganciclovir and coumermycin A1 for the treatment of ducks congenitally-infected with duck hepatitis B virus. Antiviral research. 1993 Jun; 21(2):155-71. doi: 10.1016/0166-3542(93)90051-j. [PMID: 7687840]
  • A A Divo, A C Sartorelli, C L Patton, F J Bia. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrobial agents and chemotherapy. 1988 Aug; 32(8):1182-6. doi: 10.1128/aac.32.8.1182. [PMID: 2847647]
  • A M Hirschl, A Georgopoulos, G Stanek, S Breyer, M L Rotter. Efficacy of coumermycin, ofloxacin and vancomycin against methicillin-resistant Staphylococcus aureus in vitro and in experimental infections of mice. Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology. 1988 Mar; 267(4):541-8. doi: 10.1016/s0176-6724(88)80038-5. [PMID: 3164157]
  • P Van der Auwera, M Husson, J Frühling. Influence of various antibiotics on phagocytosis of Staphylococcus aureus by human polymorphonuclear leucocytes. The Journal of antimicrobial chemotherapy. 1987 Sep; 20(3):399-404. doi: 10.1093/jac/20.3.399. [PMID: 3680077]
  • P Van der Auwera, P Joly. Comparative in-vitro activities of teicoplanin, vancomycin, coumermycin and ciprofloxacin, alone and in combination with rifampicin or LM 427, against Staphylococcus aureus. The Journal of antimicrobial chemotherapy. 1987 Mar; 19(3):313-20. doi: 10.1093/jac/19.3.313. [PMID: 3032884]
  • P Van der Auwera, G Petrikkos, M Husson, J Klastersky. Influence of various antibiotics on superoxide generation by normal human neutrophils. Archives internationales de physiologie et de biochimie. 1986 Dec; 94(5):S23-8. doi: NULL. [PMID: 2440398]
  • N Strojny, P Conzentino, J A de Silva. Determination of coumermycin A1 in plasma by reversed-phase high-performance liquid chromatographic analysis. Journal of chromatography. 1985 Jul; 342(1):145-58. doi: 10.1016/s0378-4347(00)84497-7. [PMID: 4044745]
  • M E Gombert, T M Aulicino. Susceptibility of multiply antibiotic-resistant pneumococci to the new quinoline antibiotics, nalidixic acid, coumermycin, and novobiocin. Antimicrobial agents and chemotherapy. 1984 Dec; 26(6):933-4. doi: 10.1128/aac.26.6.933. [PMID: 6570085]
  • G Palù, J von Berger, G A Meloni, L Masotti. Nature of toxicity for chick embryo fibroblast cells of coumermycin A1 and its physico-chemical interactions with protein and nucleic acid. Biochemical pharmacology. 1984 Jan; 33(1):147-54. doi: 10.1016/0006-2952(84)90382-4. [PMID: 6200113]