Glucose-1,6-diphosphate (BioDeep_00000903721)
代谢物信息卡片
化学式: C6H10O12P2-4 (335.96475200000003)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C1C(C(C(C(O1)OP(=O)([O-])[O-])O)O)O)OP(=O)([O-])[O-]
InChI: InChI=1S/C6H14O12P2/c7-3-2(1-16-19(10,11)12)17-6(5(9)4(3)8)18-20(13,14)15/h2-9H,1H2,(H2,10,11,12)(H2,13,14,15)/p-4/t2-,3-,4+,5-,6?/m1/s1
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Eva Morava, Ulrich A Schatz, Pernille M Torring, Mary-Alice Abbott, Matthias Baumann, Charlotte Brasch-Andersen, Nathalie Chevalier, Ulrike Dunkhase-Heinl, Martin Fleger, Tobias B Haack, Stephen Nelson, Sven Potelle, Silvia Radenkovic, Guido T Bommer, Emile Van Schaftingen, Maria Veiga-da-Cunha. Impaired glucose-1,6-biphosphate production due to bi-allelic PGM2L1 mutations is associated with a neurodevelopmental disorder.
American journal of human genetics.
2021 06; 108(6):1151-1160. doi:
10.1016/j.ajhg.2021.04.017
. [PMID: 33979636] - Henry P Wood, F Aaron Cruz-Navarrete, Nicola J Baxter, Clare R Trevitt, Angus J Robertson, Samuel R Dix, Andrea M Hounslow, Matthew J Cliff, Jonathan P Waltho. Allomorphy as a mechanism of post-translational control of enzyme activity.
Nature communications.
2020 11; 11(1):5538. doi:
10.1038/s41467-020-19215-9
. [PMID: 33139716] - W W Winder, J M Carling, C Duan, J P Jones, S L Palmer, M C Walker. Muscle fructose-2,6-bisphosphate and glucose-1,6-bisphosphate during insulin-induced hypoglycemia.
Journal of applied physiology (Bethesda, Md. : 1985).
1994 Feb; 76(2):853-8. doi:
10.1152/jappl.1994.76.2.853
. [PMID: 8175599] - C Duan, W W Winder. Effect of endurance training on activators of glycolysis in muscle during exercise.
Journal of applied physiology (Bethesda, Md. : 1985).
1994 Feb; 76(2):846-52. doi:
10.1152/jappl.1994.76.2.846
. [PMID: 8175598] - A Katz, C Bogardus. Insulin-mediated increase in glucose 1,6-bisphosphate is attenuated in skeletal muscle of insulin-resistant man.
Metabolism: clinical and experimental.
1990 Dec; 39(12):1300-4. doi:
10.1016/0026-0495(90)90187-h
. [PMID: 2246971] - A Katz, B L Nyomba, C Bogardus. Euglycemic hyperinsulinemia increases glucose 1,6-bisphosphate in human skeletal muscle.
The International journal of biochemistry.
1989; 21(10):1079-82. doi:
10.1016/0020-711x(89)90046-3
. [PMID: 2684699] - A Katz, A D Lee. G-1,6-P2 in human skeletal muscle after isometric contraction.
The American journal of physiology.
1988 Aug; 255(2 Pt 1):C145-8. doi:
10.1152/ajpcell.1988.255.2.c145
. [PMID: 3407760] - A Katz. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle.
The American journal of physiology.
1988 Aug; 255(2 Pt 1):C140-4. doi:
10.1152/ajpcell.1988.255.2.c140
. [PMID: 3407759] - A Katz, K Sahlin, J Henriksson. Carbohydrate metabolism in human skeletal muscle during exercise is not regulated by G-1,6-P2.
Journal of applied physiology (Bethesda, Md. : 1985).
1988 Jul; 65(1):487-9. doi:
10.1152/jappl.1988.65.1.487
. [PMID: 2969883] - R S Rana, M C Sekar, L E Hokin, M J MacDonald. A possible role for glucose metabolites in the regulation of inositol-1,4,5-trisphosphate 5-phosphomonoesterase activity in pancreatic islets.
The Journal of biological chemistry.
1986 Apr; 261(12):5237-40. doi:
. [PMID: 3007495]
- C Niederau, J H Grendell, S S Rothman. Digestive end products release pancreatic enzymes from particulate cellular pools, particularly zymogen granules.
Biochimica et biophysica acta.
1986 Apr; 881(2):281-91. doi:
10.1016/0304-4165(86)90015-2
. [PMID: 2420368]