Protochlorophyll a (BioDeep_00000903301)

   


代谢物信息卡片


Protochlorophyll a

化学式: C55H71N4O5- (867.5424)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC1=C(C2=NC1=CC3=C(C4=C(C(C(=C5C(=C(C(=N5)C=C6C(=C(C(=C2)N6)C=C)C)C)CCC(=O)OCC=C(C)CCCC(C)CCCC(C)CCCC(C)C)C4=N3)C(=O)OC)[O-])C)C
InChI: InChI=1S/C55H72N4O5/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42/h13,26,28-33,51,56,61H,1,14-25,27H2,2-12H3/p-1/b34-26+,42-28?,46-29?,47-30?,52-50?

描述信息

同义名列表

1 个代谢物同义名

Protochlorophyll a



数据库引用编号

1 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Minting Liang, Dachuan Gu, Zhiyang Lie, Yongyi Yang, Longxin Lu, Guangyi Dai, Tao Peng, Ling Deng, Feng Zheng, Xuncheng Liu. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH:protochlorophyll oxidoreductase A in Arabidopsis. Plant science : an international journal of experimental plant biology. 2023 Feb; 330(?):111641. doi: 10.1016/j.plantsci.2023.111641. [PMID: 36806610]
  • Jerzy Kruk, Michał Gabruk, Marian Kryszczak, Piotr Wąsik. Protochlorophylls in Cucurbitaceae - Distribution, biosynthesis and phylogeny. Phytochemistry. 2022 May; 197(?):113110. doi: 10.1016/j.phytochem.2022.113110. [PMID: 35114573]
  • Anna Laura Erdei, Annamária Kósa, Béla Böddi. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls. Photosynthesis research. 2019 Apr; 140(1):93-102. doi: 10.1007/s11120-018-0584-y. [PMID: 30225812]
  • Liya Jiao, Hezhou Ding, Lihong Wang, Qing Zhou, Xiaohua Huang. Bisphenol A effects on the chlorophyll contents in soybean at different growth stages. Environmental pollution (Barking, Essex : 1987). 2017 Apr; 223(?):426-434. doi: 10.1016/j.envpol.2017.01.042. [PMID: 28139326]
  • Andrea Kakuszi, Katalin Solymosi, Béla Böddi. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period. Physiologia plantarum. 2017 Apr; 159(4):483-491. doi: 10.1111/ppl.12519. [PMID: 27734513]
  • Anna Laura Erdei, Annamária Kósa, Lilla Kovács-Smirová, Béla Böddi. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.). Photosynthesis research. 2016 Apr; 128(1):73-83. doi: 10.1007/s11120-015-0200-3. [PMID: 26519365]
  • Liya Jiao, Lihong Wang, Zhiyong Qiu, Qingqing Wang, Qing Zhou, Xiaohua Huang. Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. Environmental science and pollution research international. 2015 Apr; 22(8):5877-86. doi: 10.1007/s11356-014-3764-0. [PMID: 25352395]
  • Andrea Kakuszi, Béla Böddi. Light piping activates chlorophyll biosynthesis in the under-soil hypocotyl section of bean seedlings. Journal of photochemistry and photobiology. B, Biology. 2014 Nov; 140(?):1-7. doi: 10.1016/j.jphotobiol.2014.06.015. [PMID: 25063979]
  • Beáta Vitányi, Annamária Kósa, Katalin Solymosi, Béla Böddi. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiologia plantarum. 2013 Jun; 148(2):307-15. doi: 10.1111/j.1399-3054.2012.01714.x. [PMID: 23067197]
  • Beata Mysliwa-Kurdziel, Jerzy Kruk, Kazimierz Strzałka. Protochlorophyllide and protochlorophyll in model membranes - an influence of hydrophobic side chain moiety. Biochimica et biophysica acta. 2013 Mar; 1828(3):1075-82. doi: 10.1016/j.bbamem.2012.12.007. [PMID: 23261391]
  • Beata Myśliwa-Kurdziel, Katalin Solymosi, Jerzy Kruk, Béla Böddi, Kazimierz Strzałka. Solvent effects on fluorescence properties of protochlorophyll and its derivatives with various porphyrin side chains. European biophysics journal : EBJ. 2008 Sep; 37(7):1185-93. doi: 10.1007/s00249-008-0288-x. [PMID: 18340441]
  • Veronika Reisinger, Alexander P Hertle, Matthias Plöscher, Lutz A Eichacker. Cytochrome b6f is a dimeric protochlorophyll a binding complex in etioplasts. The FEBS journal. 2008 Mar; 275(5):1018-24. doi: 10.1111/j.1742-4658.2008.06268.x. [PMID: 18221490]
  • O B Belyaeva, F F Litvin. Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves. Biochemistry. Biokhimiia. 2007 Dec; 72(13):1458-77. doi: 10.1134/s0006297907130044. [PMID: 18282136]
  • Beata Myśliwa-Kurdziel, Katalin Solymosi, Jerzy Kruk, Béla Böddi, Kazimierz Strzałka. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100. Journal of photochemistry and photobiology. B, Biology. 2007 Mar; 86(3):262-71. doi: 10.1016/j.jphotobiol.2006.11.003. [PMID: 17234426]
  • N V Ignatov, F F Litvin. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves. Biochemistry. Biokhimiia. 2002 Aug; 67(8):949-55. doi: 10.1023/a:1019983124484. [PMID: 12223097]
  • A Skribanek, B Böddi. Light- and cold-stress effects on the greening process in epicotyls and young stems of red oak (Quercus rubra) seedlings. Tree physiology. 2001 May; 21(8):549-54. doi: 10.1093/treephys/21.8.549. [PMID: 11359713]
  • A Nakamura, S Tanaka, T Watanabe. Normal-phase HPLC separation of possible biosynthetic intermediates of pheophytin a and chlorophyll a'. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2001 Apr; 17(4):509-13. doi: 10.2116/analsci.17.509. [PMID: 11990567]
  • B L Montgomery, K A Franklin, M J Terry, B Thomas, S D Jackson, M W Crepeau, J C Lagarias. Biliverdin reductase-induced phytochrome chromophore deficiency in transgenic tobacco. Plant physiology. 2001 Jan; 125(1):266-77. doi: 10.1104/pp.125.1.266. [PMID: 11154335]
  • B L Montgomery, K C Yeh, M W Crepeau, J C Lagarias. Modification of distinct aspects of photomorphogenesis via targeted expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant physiology. 1999 Oct; 121(2):629-39. doi: 10.1104/pp.121.2.629. [PMID: 10517855]
  • C A Rebeiz, R Parham, D A Fasoula, I M Ioannides. Chlorophyll a biosynthetic heterogeneity. Ciba Foundation symposium. 1994; 180(?):177-89; discussion 190. doi: 10.1002/9780470514535.ch10. [PMID: 7842852]
  • C Sundqvist, C Grevby. Development of plastid membranes in immobilized systems. Advances in experimental medicine and biology. 1988; 238(?):247-56. doi: 10.1007/978-1-4684-7908-9_19. [PMID: 3250243]
  • S KLEIN, A POLJAKOFF-MAYBER. Fine structure and pigment conversion in isolated etiolated proplastids. The Journal of biophysical and biochemical cytology. 1961 Nov; 11(?):433-40. doi: 10.1083/jcb.11.2.433. [PMID: 14456780]
  • S KLEIN. The effect of low temperature on the development of the lamellar system in chloroplasts. The Journal of biophysical and biochemical cytology. 1960 Oct; 8(?):529-38. doi: 10.1083/jcb.8.2.529. [PMID: 13756693]
  • T N GODNEV, M V TERENT'EVA. [Transformation of protochlorophyll into chlorophyll in etiolated maize leaves in infiltration of Picea excelsa extract]. Doklady Akademii nauk SSSR. 1953 Feb; 88(4):725-7. doi: ". [PMID: 13033725]