5-((2-Iodoacetamido)ethyl)-1-aminonapthalene sulfate (BioDeep_00000900431)

   


代谢物信息卡片


5-((2-Iodoacetamido)ethyl)-1-aminonapthalene sulfate

化学式: C14H14IN2O4S- (432.97190140000004)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC2=C(C=CC=C2S(=O)(=O)[O-])C(=C1)NCCNC(=O)CI
InChI: InChI=1S/C14H15IN2O4S/c15-9-14(18)17-8-7-16-12-5-1-4-11-10(12)3-2-6-13(11)22(19,20)21/h1-6,16H,7-9H2,(H,17,18)(H,19,20,21)/p-1

描述信息

D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents
D004396 - Coloring Agents > D005456 - Fluorescent Dyes

同义名列表

1 个代谢物同义名

5-((2-Iodoacetamido)ethyl)-1-aminonapthalene sulfate



数据库引用编号

1 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Karishma Bhasne, Neha Jain, Rishabh Karnawat, Shruti Arya, Anupa Majumdar, Anubhuti Singh, Samrat Mukhopadhyay. Discerning Dynamic Signatures of Membrane-Bound α-Synuclein Using Site-Specific Fluorescence Depolarization Kinetics. The journal of physical chemistry. B. 2020 02; 124(5):708-717. doi: 10.1021/acs.jpcb.9b09118. [PMID: 31917569]
  • Prajna Mishra, Santosh Kumar Jha. Slow Motion Protein Dance Visualized Using Red-Edge Excitation Shift of a Buried Fluorophore. The journal of physical chemistry. B. 2019 02; 123(6):1256-1264. doi: 10.1021/acs.jpcb.8b11151. [PMID: 30640479]
  • Taichi Yamamoto, Johanne Lamoureux, Robert O Ryan. Characterization of low density lipoprotein receptor ligand interactions by fluorescence resonance energy transfer. Journal of lipid research. 2006 May; 47(5):1091-6. doi: 10.1194/jlr.d600001-jlr200. [PMID: 16467279]
  • Torsten Heidenreich, Silke Wollers, Ralf R Mendel, Florian Bittner. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. The Journal of biological chemistry. 2005 Feb; 280(6):4213-8. doi: 10.1074/jbc.m411195200. [PMID: 15561708]
  • B Lebreton, A Lyddiatt. Application of aqueous two-phase partition to the production of homogeneous preparations of fluorescently labelled human serum albumin. Journal of chromatography. B, Biomedical sciences and applications. 2000 Jun; 743(1-2):263-9. doi: 10.1016/s0378-4347(99)00517-4. [PMID: 10942296]
  • H Sun, D Yin, T C Squier. Calcium-dependent structural coupling between opposing globular domains of calmodulin involves the central helix. Biochemistry. 1999 Sep; 38(38):12266-79. doi: 10.1021/bi9818671. [PMID: 10493794]
  • S D Zakharov, M Lindeberg, W A Cramer. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. Biochemistry. 1999 Aug; 38(35):11325-32. doi: 10.1021/bi9903087. [PMID: 10471282]
  • I Ubarretxena-Belandia, L Hozeman, E van der Brink-van der Laan, E H Pap, M R Egmond, H M Verheij, N Dekker. Outer membrane phospholipase A is dimeric in phospholipid bilayers: a cross-linking and fluorescence resonance energy transfer study. Biochemistry. 1999 Jun; 38(22):7398-405. doi: 10.1021/bi983077x. [PMID: 10353852]
  • C A Fisher, R O Ryan. Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. Journal of lipid research. 1999 Jan; 40(1):93-9. doi: 10.1016/s0022-2275(20)33343-5. [PMID: 9869654]
  • D Stopar, R B Spruijt, C J Wolfs, M A Hemminga. Mimicking initial interactions of bacteriophage M13 coat protein disassembly in model membrane systems. Biochemistry. 1998 Jul; 37(28):10181-7. doi: 10.1021/bi9718144. [PMID: 9665724]
  • B Lebreton, J Huddleston, A Lyddiatt. Polymer-protein interactions in aqueous two phase systems: fluorescent studies of the partition behaviour of human serum albumin. Journal of chromatography. B, Biomedical sciences and applications. 1998 Jun; 711(1-2):69-79. doi: 10.1016/s0378-4347(98)00102-9. [PMID: 9699976]
  • M Palmer, R Harris, C Freytag, M Kehoe, J Tranum-Jensen, S Bhakdi. Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. The EMBO journal. 1998 Mar; 17(6):1598-605. doi: 10.1093/emboj/17.6.1598. [PMID: 9501081]
  • G A Roth, M D Gonzalez, C G Monferran, M L De Santis, F A Cumar. Myelin basic protein domains involved in the interaction with actin. Neurochemistry international. 1993 Nov; 23(5):459-65. doi: 10.1016/0197-0186(93)90130-w. [PMID: 7504549]
  • J H Lakey, D Duché, J M González-Mañas, D Baty, F Pattus. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state. Journal of molecular biology. 1993 Apr; 230(3):1055-67. doi: 10.1006/jmbi.1993.1218. [PMID: 7683055]
  • E R Chapman, K Alexander, T Vorherr, E Carafoli, D R Storm. Fluorescence energy transfer analysis of calmodulin-peptide complexes. Biochemistry. 1992 Dec; 31(51):12819-25. doi: 10.1021/bi00166a016. [PMID: 1463753]
  • T Weimbs, W Stoffel. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry. 1992 Dec; 31(49):12289-96. doi: 10.1021/bi00164a002. [PMID: 1281423]
  • W C Hawkes, M A Kutnink. High-performance liquid chromatographic determination of selenocysteine with the fluorescent reagent, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid. Journal of chromatography. 1992 May; 576(2):263-70. doi: 10.1016/0378-4347(92)80200-a. [PMID: 1400714]
  • A Kusumi, A Tsuji, M Murata, Y Sako, A C Yoshizawa, S Kagiwada, T Hayakawa, S Ohnishi. Development of a streak-camera-based time-resolved microscope fluorimeter and its application to studies of membrane fusion in single cells. Biochemistry. 1991 Jul; 30(26):6517-27. doi: 10.1021/bi00240a024. [PMID: 2054350]
  • J H Lakey, D Baty, F Pattus. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A. Journal of molecular biology. 1991 Apr; 218(3):639-53. doi: 10.1016/0022-2836(91)90707-d. [PMID: 2016750]
  • R F Pont-Lezica, J E Varner. Histochemical localization of cysteine-rich proteins by tissue printing on nitrocellulose. Analytical biochemistry. 1989 Nov; 182(2):334-7. doi: 10.1016/0003-2697(89)90604-0. [PMID: 2610351]
  • G González. Fluorescent derivative of cysteine-10 reveals thyroxine-dependent conformational modifications in human serum prealbumin. Archives of biochemistry and biophysics. 1989 May; 271(1):200-5. doi: 10.1016/0003-9861(89)90270-1. [PMID: 2712572]
  • J J Gorman. Fluorescent labeling of cysteinyl residues to facilitate electrophoretic isolation of proteins suitable for amino-terminal sequence analysis. Analytical biochemistry. 1987 Feb; 160(2):376-87. doi: 10.1016/0003-2697(87)90064-9. [PMID: 3578767]
  • H Osada, M Nakanishi, M Tsuboi, K Kinosita, A Ikegami. Rotational dynamics of immunoglobulins with fluorescent haptens on a membrane surface. Biochimica et biophysica acta. 1984 Jun; 773(2):321-4. doi: 10.1016/0005-2736(84)90097-x. [PMID: 6733099]