cyclo[Ile-N(Me)Val-Leu-N(Me)Val(3-OH)-D-OxiIle-N(Me)Val-Phe-N(Me)Phe-Pro] (BioDeep_00000899900)

   


代谢物信息卡片


cyclo[Ile-N(Me)Val-Leu-N(Me)Val(3-OH)-D-OxiIle-N(Me)Val-Phe-N(Me)Phe-Pro]

化学式: C60H92N8O11 (1100.6885201999999)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC(C)C1C(=O)N(C(C(=O)NC(C(=O)N(C(C(=O)OC(C(=O)N(C(C(=O)NC(C(=O)N(C(C(=O)N2CCCC2C(=O)N1)CC3=CC=CC=C3)C)CC4=CC=CC=C4)C(C)C)C)C(C)CC)C(C)(C)O)C)CC(C)C)C(C)C)C
InChI: InChI=1S/C60H92N8O11/c1-17-38(9)46-57(75)65(14)47(36(5)6)52(70)61-42(32-35(3)4)55(73)67(16)50(60(11,12)78)59(77)79-49(39(10)18-2)58(76)66(15)48(37(7)8)53(71)62-43(33-40-26-21-19-22-27-40)54(72)64(13)45(34-41-28-23-20-24-29-41)56(74)68-31-25-30-44(68)51(69)63-46/h19-24,26-29,35-39,42-50,78H,17-18,25,30-34H2,1-16H3,(H,61,70)(H,62,71)(H,63,69)/t38-,39?,42-,43-,44-,45-,46-,47-,48-,49+,50+/m0/s1

描述信息

D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
D004791 - Enzyme Inhibitors

同义名列表

1 个代谢物同义名

cyclo[Ile-N(Me)Val-Leu-N(Me)Val(3-OH)-D-OxiIle-N(Me)Val-Phe-N(Me)Phe-Pro]



数据库引用编号

1 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Shizuka Fukuda, Yushi Kono, Yohei Ishibashi, Mitsuaki Tabuchi, Motohiro Tani. Impaired biosynthesis of ergosterol confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in a PDR16-dependent manner. Scientific reports. 2023 07; 13(1):11179. doi: 10.1038/s41598-023-38237-z. [PMID: 37429938]
  • Francisco Piña, Fumi Yagisawa, Keisuke Obara, J D Gregerson, Akio Kihara, Maho Niwa. Sphingolipids activate the endoplasmic reticulum stress surveillance pathway. The Journal of cell biology. 2018 02; 217(2):495-505. doi: 10.1083/jcb.201708068. [PMID: 29317528]
  • Yuka Katsuki, Yutaro Yamaguchi, Motohiro Tani. Overexpression of PDR16 confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in yeast Saccharomyces cerevisiae. FEMS microbiology letters. 2018 02; 365(3):. doi: 10.1093/femsle/fnx255. [PMID: 29240942]
  • Natalia S Voynova, Carole Roubaty, Hector M Vazquez, Shamroop K Mallela, Christer S Ejsing, Andreas Conzelmann. Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated. Eukaryotic cell. 2015 Dec; 14(12):1203-16. doi: 10.1128/ec.00117-15. [PMID: 26432633]
  • Huiru Yan, Haihong Jia, Xiaobo Chen, Lili Hao, Hailong An, Xingqi Guo. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant & cell physiology. 2014 Dec; 55(12):2060-76. doi: 10.1093/pcp/pcu133. [PMID: 25261532]
  • Erwin Swinnen, Tobias Wilms, Jolanta Idkowiak-Baldys, Bart Smets, Pepijn De Snijder, Sabina Accardo, Ruben Ghillebert, Karin Thevissen, Bruno Cammue, Dirk De Vos, Jacek Bielawski, Yusuf A Hannun, Joris Winderickx. The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae. Molecular biology of the cell. 2014 Jan; 25(1):196-211. doi: 10.1091/mbc.e13-06-0340. [PMID: 24196832]
  • Ali Abdul Lattif, Pranab K Mukherjee, Jyotsna Chandra, Mary R Roth, Ruth Welti, Mahmoud Rouabhia, Mahmoud A Ghannoum. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology (Reading, England). 2011 Nov; 157(Pt 11):3232-3242. doi: 10.1099/mic.0.051086-0. [PMID: 21903752]
  • J G Mina, Y Okada, N K Wansadhipathi-Kannangara, S Pratt, H Shams-Eldin, R T Schwarz, P G Steel, T Fawcett, P W Denny. Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant molecular biology. 2010 Jul; 73(4-5):399-407. doi: 10.1007/s11103-010-9626-3. [PMID: 20309609]
  • Vanessa Cerantola, Isabelle Guillas, Carole Roubaty, Christine Vionnet, Danièle Uldry, Jens Knudsen, Andreas Conzelmann. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides. Molecular microbiology. 2009 Mar; 71(6):1523-37. doi: 10.1111/j.1365-2958.2009.06628.x. [PMID: 19210614]
  • Kentaro Kajiwara, Reika Watanabe, Harald Pichler, Kensuke Ihara, Suguru Murakami, Howard Riezman, Kouichi Funato. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Molecular biology of the cell. 2008 May; 19(5):2069-82. doi: 10.1091/mbc.e07-08-0740. [PMID: 18287539]
  • Ameria K Tanaka, Valderez B Valero, Helio K Takahashi, Anita H Straus. Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. The Journal of antimicrobial chemotherapy. 2007 Mar; 59(3):487-92. doi: 10.1093/jac/dkl518. [PMID: 17242034]
  • Paul W Denny, Hosam Shams-Eldin, Helen P Price, Deborah F Smith, Ralph T Schwarz. The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase. The Journal of biological chemistry. 2006 Sep; 281(38):28200-9. doi: 10.1074/jbc.m600796200. [PMID: 16861742]
  • Jorge Cerbón, Alejandro Falcon, Carlos Hernández-Luna, David Segura-Cobos. Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. The Biochemical journal. 2005 May; 388(Pt 1):169-76. doi: 10.1042/bj20040475. [PMID: 15560753]
  • Sabrina Sonda, Giusy Sala, Riccardo Ghidoni, Andrew Hemphill, Jean Pieters. Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrobial agents and chemotherapy. 2005 May; 49(5):1794-801. doi: 10.1128/aac.49.5.1794-1801.2005. [PMID: 15855498]
  • Maria Laura Salto, Laura E Bertello, Mauricio Vieira, Roberto Docampo, Silvia N J Moreno, Rosa M de Lederkremer. Formation and remodeling of inositolphosphoceramide during differentiation of Trypanosoma cruzi from trypomastigote to amastigote. Eukaryotic cell. 2003 Aug; 2(4):756-68. doi: 10.1128/ec.2.4.756-768.2003. [PMID: 12912895]
  • F Reggiori, A Conzelmann. Biosynthesis of inositol phosphoceramides and remodeling of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae are mediated by different enzymes. The Journal of biological chemistry. 1998 Nov; 273(46):30550-9. doi: 10.1074/jbc.273.46.30550. [PMID: 9804825]
  • K Takesako, H Kuroda, T Inoue, F Haruna, Y Yoshikawa, I Kato, K Uchida, T Hiratani, H Yamaguchi. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. The Journal of antibiotics. 1993 Sep; 46(9):1414-20. doi: 10.7164/antibiotics.46.1414. [PMID: 8226319]