(2S)-3,4-dihydro-2H-pyrrole-2-carboxylate (BioDeep_00000898978)

   


代谢物信息卡片


(2S)-3,4-dihydro-2H-pyrrole-2-carboxylate

化学式: C5H6NO2- (112.03985159999999)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 15.38%

分子结构信息

SMILES: C1CC(N=C1)C(=O)[O-]
InChI: InChI=1S/C5H7NO2/c7-5(8)4-2-1-3-6-4/h3-4H,1-2H2,(H,7,8)/p-1/t4-/m0/s1

描述信息

同义名列表

1 个代谢物同义名

(2S)-3,4-dihydro-2H-pyrrole-2-carboxylate



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(15)

PlantCyc(5)

代谢反应

1625 个相关的代谢反应过程信息。

Reactome(101)

BioCyc(127)

WikiPathways(2)

Plant Reactome(703)

INOH(0)

PlantCyc(692)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Giuseppe Forlani, Giuseppe Sabbioni, Simone Barera, Dietmar Funck. A complex array of factors regulate the activity of Arabidopsis thaliana δ1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. Plant, cell & environment. 2024 Apr; 47(4):1348-1362. doi: 10.1111/pce.14817. [PMID: 38223941]
  • Yao Zheng, Cécile Cabassa-Hourton, Holger Eubel, Guillaume Chevreux, Laurent Lignieres, Emilie Crilat, Hans-Peter Braun, Sandrine Lebreton, Arnould Savouré. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. Journal of experimental botany. 2023 Oct; ?(?):. doi: 10.1093/jxb/erad406. [PMID: 37843921]
  • Yao Zheng, Cécile Cabassa-Hourton, Séverine Planchais, Emilie Crilat, Gilles Clément, Matthieu Dacher, Nina Durand, Marianne Bordenave-Jacquemin, Anne Guivarc'h, Corentin Dourmap, Pierre Carol, Sandrine Lebreton, Arnould Savouré. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana. Plant, cell & environment. 2023 03; 46(3):901-917. doi: 10.1111/pce.14529. [PMID: 36583533]
  • Chengcheng Chen, Xiaoyue Cui, Pingying Zhang, Zheng Wang, Jianxia Zhang. Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. Plant physiology and biochemistry : PPB. 2021 Nov; 168(?):188-201. doi: 10.1016/j.plaphy.2021.10.004. [PMID: 34649022]
  • Xuwei Liu, Zhuoli Huang, Yuzhan Li, Wenjun Xie, Wu Li, Xiangru Tang, Umair Ashraf, Leilei Kong, Longmei Wu, Shuli Wang, Zhaowen Mo. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicology and environmental safety. 2020 Jun; 196(?):110525. doi: 10.1016/j.ecoenv.2020.110525. [PMID: 32224370]
  • Débora Bublitz Anton, Frank Lino Guzman, Nicole Moreira Vetö, Felipe Augusto Krause, Franceli Rodrigues Kulcheski, Ana Paula Durand Coelho, Guilherme Leitão Duarte, Rogério Margis, Lúcia Rebello Dillenburg, Andreia Carina Turchetto-Zolet. Characterization and expression analysis of P5CS (Δ1-pyrroline-5-carboxylate synthase) gene in two distinct populations of the Atlantic Forest native species Eugenia uniflora L. Molecular biology reports. 2020 Feb; 47(2):1033-1043. doi: 10.1007/s11033-019-05195-7. [PMID: 31749121]
  • Cong Guan, Yan-Hua Huang, Hui-Fang Cen, Xin Cui, Dan-Yang Tian, Yun-Wei Zhang. Overexpression of the Lolium perenne L. delta1-pyrroline 5-carboxylate synthase (LpP5CS) gene results in morphological alterations and salinity tolerance in switchgrass (Panicum virgatum L.). PloS one. 2019; 14(7):e0219669. doi: 10.1371/journal.pone.0219669. [PMID: 31310632]
  • Christian Blume, Julia Ost, Marco Mühlenbruch, Christoph Peterhänsel, Miriam Laxa. Low CO2 induces urea cycle intermediate accumulation in Arabidopsis thaliana. PloS one. 2019; 14(1):e0210342. doi: 10.1371/journal.pone.0210342. [PMID: 30650113]
  • Shumaila Muzammil, Asis Shrestha, Said Dadshani, Klaus Pillen, Shahid Siddique, Jens Léon, Ali Ahmad Naz. An Ancestral Allele of Pyrroline-5-carboxylate synthase1 Promotes Proline Accumulation and Drought Adaptation in Cultivated Barley. Plant physiology. 2018 10; 178(2):771-782. doi: 10.1104/pp.18.00169. [PMID: 30131422]
  • Dávid Aleksza, Gábor V Horváth, Györgyi Sándor, László Szabados. Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation. Plant physiology. 2017 Sep; 175(1):555-567. doi: 10.1104/pp.17.00791. [PMID: 28765275]
  • Pasqualina Woodrow, Loredana F Ciarmiello, Maria Grazia Annunziata, Severina Pacifico, Federica Iannuzzi, Antonio Mirto, Luisa D'Amelia, Emilia Dell'Aversana, Simona Piccolella, Amodio Fuggi, Petronia Carillo. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiologia plantarum. 2017 Mar; 159(3):290-312. doi: 10.1111/ppl.12513. [PMID: 27653956]
  • Xuan Jun Feng, Jing Rui Li, Shi Lian Qi, Qing Fang Lin, Jing Bo Jin, Xue Jun Hua. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2016 12; 113(51):E8335-E8343. doi: 10.1073/pnas.1610670114. [PMID: 27930298]
  • Benjamin W Arentson, Erin L Hayes, Weidong Zhu, Harkewal Singh, John J Tanner, Donald F Becker. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA. Bioscience reports. 2016 12; 36(6):. doi: 10.1042/bsr20160435. [PMID: 27742866]
  • Meijuan Li, Umair Ashraf, Hua Tian, Zhaowen Mo, Shenggang Pan, Shakeel Ahmad Anjum, Meiyang Duan, Xiangru Tang. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant physiology and biochemistry : PPB. 2016 Jun; 103(?):167-75. doi: 10.1016/j.plaphy.2016.03.009. [PMID: 26995311]
  • Vijeta Singh, Bhumi Nath Tripathi, Vinay Sharma. Interaction of Mg with heavy metals (Cu, Cd) in T. aestivum with special reference to oxidative and proline metabolism. Journal of plant research. 2016 May; 129(3):487-97. doi: 10.1007/s10265-015-0767-y. [PMID: 26547559]
  • Hamada AbdElgawad, Dirk De Vos, Gaurav Zinta, Malgorzata A Domagalska, Gerrit T S Beemster, Han Asard. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. The New phytologist. 2015 Oct; 208(2):354-69. doi: 10.1111/nph.13481. [PMID: 26037253]
  • Madhulika Singh, Vijay Pratap Singh, Gunjan Dubey, Sheo Mohan Prasad. Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicology and environmental safety. 2015 Jul; 117(?):164-73. doi: 10.1016/j.ecoenv.2015.03.021. [PMID: 25881134]
  • Mariela Inés Monteoliva, Yanina Soledad Rizzi, Nicolás Miguel Cecchini, Mohammad-Reza Hajirezaei, María Elena Alvarez. Context of action of proline dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis. BMC plant biology. 2014 Jan; 14(?):21. doi: 10.1186/1471-2229-14-21. [PMID: 24410747]
  • Milena Cvikrová, Lenka Gemperlová, Olga Martincová, Radomira Vanková. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant physiology and biochemistry : PPB. 2013 Dec; 73(?):7-15. doi: 10.1016/j.plaphy.2013.08.005. [PMID: 24029075]
  • Goon-Bo Kim, Young-Woo Nam. A novel Δ(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. Journal of plant physiology. 2013 Feb; 170(3):291-302. doi: 10.1016/j.jplph.2012.10.004. [PMID: 23158502]
  • M Nagaraj Kumar, Wann-Neng Jane, Paul E Verslues. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant physiology. 2013 Feb; 161(2):942-53. doi: 10.1104/pp.112.209791. [PMID: 23184230]
  • Ziting Yao, Chengwu Zou, Hui Zhou, Jinzi Wang, Lidan Lu, Yang Li, Baoshan Chen. Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation. PloS one. 2013; 8(9):e73483. doi: 10.1371/journal.pone.0073483. [PMID: 24039956]
  • Muthappa Senthil-Kumar, Kirankumar S Mysore. Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant, cell & environment. 2012 Jul; 35(7):1329-43. doi: 10.1111/j.1365-3040.2012.02492.x. [PMID: 22321246]
  • Mubshara Saadia, Amer Jamil, Nudrat Aisha Akram, Muhammad Ashraf. A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules (Basel, Switzerland). 2012 May; 17(5):5803-15. doi: 10.3390/molecules17055803. [PMID: 22592086]
  • Hanan Stein, Arik Honig, Gad Miller, Oran Erster, Haviva Eilenberg, Laszlo N Csonka, László Szabados, Csaba Koncz, Aviah Zilberstein. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant science : an international journal of experimental plant biology. 2011 Aug; 181(2):140-50. doi: 10.1016/j.plantsci.2011.04.013. [PMID: 21683879]
  • Guoyao Wu, Fuller W Bazer, Robert C Burghardt, Gregory A Johnson, Sung Woo Kim, Darrell A Knabe, Peng Li, Xilong Li, Jason R McKnight, M Carey Satterfield, Thomas E Spencer. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino acids. 2011 Apr; 40(4):1053-63. doi: 10.1007/s00726-010-0715-z. [PMID: 20697752]
  • Gad Miller, Arik Honig, Hanan Stein, Nobuhiro Suzuki, Ron Mittler, Aviah Zilberstein. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. The Journal of biological chemistry. 2009 Sep; 284(39):26482-92. doi: 10.1074/jbc.m109.009340. [PMID: 19635803]
  • Jose Fernando De La Torre-Sanchez, Kimberly Preis, George E Seidel. Metabolic regulation of in-vitro-produced bovine embryos. I. Effects of metabolic regulators at different glucose concentrations with embryos produced by semen from different bulls. Reproduction, fertility, and development. 2006; 18(5):585-96. doi: 10.1071/rd05063. [PMID: 16836965]
  • Neslihan Onenli-Mungan, Bilgin Yüksel, Mürüvet Elkay, Ali Kemal Topaloğlu, Tolunay Baykal, Güler Ozer. Type II hyperprolinemia: a case report. The Turkish journal of pediatrics. 2004 Apr; 46(2):167-9. doi: . [PMID: 15214748]
  • Valerie Walker, Graham A Mills, John M Mellor, G John Langley, R Duncan Farrant. A novel pyrroline-5-carboxylic acid and acetoacetic acid adduct in hyperprolinaemia type II. Clinica chimica acta; international journal of clinical chemistry. 2003 May; 331(1-2):7-17. doi: 10.1016/s0009-8981(03)00077-9. [PMID: 12691858]
  • W Miltyk, J A Palka. Potential role of pyrroline 5-carboxylate in regulation of collagen biosynthesis in cultured human skin fibroblasts. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2000 Feb; 125(2):265-71. doi: 10.1016/s1095-6433(99)00181-6. [PMID: 10825698]
  • Z Peng, Q Lu, D P Verma. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Molecular & general genetics : MGG. 1996 Dec; 253(3):334-41. doi: 10.1007/pl00008600. [PMID: 9003320]
  • N E Flynn, G Wu. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. The American journal of physiology. 1996 Nov; 271(5 Pt 2):R1149-55. doi: 10.1152/ajpregu.1996.271.5.r1149. [PMID: 8945947]
  • B A Semon, J M Phang. Accumulation of pyrroline 5-carboxylic acid in conditioned medium of cultured fibroblast: stimulatory effects of serum, insulin, and IGF-1. In vitro cellular & developmental biology : journal of the Tissue Culture Association. 1991 Aug; 27A(8):665-9. doi: 10.1007/bf02631111. [PMID: 1917783]
  • G A Fleming, A Granger, Q R Rogers, M Prosser, D B Ford, J M Phang. Fluctuations in plasma pyrroline-5-carboxylate concentrations during feeding and fasting. The Journal of clinical endocrinology and metabolism. 1989 Aug; 69(2):448-52. doi: 10.1210/jcem-69-2-448. [PMID: 2753984]
  • A J Mixson, J M Phang. The uptake of pyrroline 5-carboxylate. Group translocation mediating the transfer of reducing-oxidizing potential. The Journal of biological chemistry. 1988 Aug; 263(22):10720-4. doi: . [PMID: 3392037]
  • S J Mick, R E Thach, C H Hagedorn. Selective inhibition of proteins synthesized from different mRNA species in reticulocyte lysates containing L-pyrroline-5-carboxylic acid. Biochemical and biophysical research communications. 1988 Jan; 150(1):296-303. doi: 10.1016/0006-291x(88)90519-0. [PMID: 2827672]
  • G A Fleming, G Steel, D Valle, A S Granger, J M Phang. The aqueous humor of rabbit contains high concentrations of pyrroline-5-carboxylate. Metabolism: clinical and experimental. 1986 Oct; 35(10):933-7. doi: 10.1016/0026-0495(86)90057-0. [PMID: 3093798]
  • M E Jones. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. The Journal of nutrition. 1985 Apr; 115(4):509-15. doi: 10.1093/jn/115.4.509. [PMID: 2858518]
  • G A Fleming, C H Hagedorn, A S Granger, J M Phang. Pyrroline-5-carboxylate in human plasma. Metabolism: clinical and experimental. 1984 Aug; 33(8):739-42. doi: 10.1016/0026-0495(84)90215-4. [PMID: 6748947]
  • J M Phang, S J Downing, G C Yeh, R J Smith, J A Williams, C H Hagedorn. Stimulation of the hexosemonophosphate-pentose pathway by pyrroline-5-carboxylate in cultured cells. Journal of cellular physiology. 1982 Mar; 110(3):255-61. doi: 10.1002/jcp.1041100306. [PMID: 6896335]