UDP-alpha-D-glucuronate(3-) (BioDeep_00000897433)
代谢物信息卡片
化学式: C15H19N2O18P2-3 (577.0108)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1=CN(C(=O)NC1=O)C2C(C(C(O2)COP(=O)([O-])OP(=O)([O-])OC3C(C(C(C(O3)C(=O)[O-])O)O)O)O)O
InChI: InChI=1S/C15H22N2O18P2/c18-5-1-2-17(15(26)16-5)12-9(22)6(19)4(32-12)3-31-36(27,28)35-37(29,30)34-14-10(23)7(20)8(21)11(33-14)13(24)25/h1-2,4,6-12,14,19-23H,3H2,(H,24,25)(H,27,28)(H,29,30)(H,16,18,26)/p-3/t4-,6-,7+,8+,9-,10-,11+,12-,14-/m1/s1
描述信息
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(24)
- Metabolism
- Biological oxidations
- Metabolism of proteins
- Post-translational protein modification
- Disease
- Phase II - Conjugation of compounds
- Drug ADME
- Aspirin ADME
- Diseases of metabolism
- Diseases of glycosylation
- Transport of small molecules
- SLC-mediated transmembrane transport
- Carbohydrate metabolism
- Porphyrin metabolism
- Glycosaminoglycan metabolism
- Heparan sulfate/heparin (HS-GAG) metabolism
- A tetrasaccharide linker sequence is required for GAG synthesis
- Chondroitin sulfate/dermatan sulfate metabolism
- Diseases associated with glycosaminoglycan metabolism
- Defective B3GAT3 causes JDSSDHD
- APAP ADME
- Metabolic disorders of biological oxidation enzymes
- O-linked glycosylation
- Heme degradation
BioCyc(20)
- superpathway of betalain biosynthesis
- vitamin K degradation
- superpathway of tryptophan utilization
- superpathway of melatonin degradation
- nicotine degradation II
- melatonin degradation I
- nicotine degradation IV
- D-galactose degradation I (Leloir pathway)
- α-dystroglycan glycosylation
- colanic acid building blocks biosynthesis
- D-galactose detoxification
- UDP-sugars interconversion
- UDP-α-D-xylose biosynthesis
- L-ascorbate biosynthesis IV
- superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- UDP-D-xylose biosynthesis
- wogonin metabolism
- UDP-D-glucuronate biosynthesis (from myo-inositol)
- teichuronic acid biosynthesis (B. subtilis 168)
PlantCyc(3)
代谢反应
636 个相关的代谢反应过程信息。
Reactome(158)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Porphyrin metabolism:
BIL + Homologues of GSTA1 ⟶ BIL:GSTA1, FABP1
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Heme degradation:
BIL + Homologues of GSTA1 ⟶ BIL:GSTA1, FABP1
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
AMPAG + H2O ⟶ GlcA + MPA
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- O-linked glycosylation:
Core 2 mucins + PAPS ⟶ Core 2S mucins + PAP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- O-linked glycosylation:
PAPS ⟶ PAP
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- O-linked glycosylation:
PAPS ⟶ PAP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- O-linked glycosylation:
Core 2 mucins + PAPS ⟶ Core 2S mucins + PAP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- O-linked glycosylation:
Core 2 mucins + PAPS ⟶ Core 2S mucins + PAP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- O-linked glycosylation:
PAPS ⟶ PAP
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- O-linked glycosylation:
Core 2 mucins + PAPS ⟶ Core 2S mucins + PAP
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- O-linked glycosylation:
PAPS ⟶ PAP
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
AMP + abacavir ⟶ Ade-Rib + xenobiotic
- Aspirin ADME:
ASA + H2O ⟶ ASA- + H+ + H2O
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- APAP ADME:
APAP + UDP-GlcA ⟶ APAP-GlcA + UDP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- A tetrasaccharide linker sequence is required for GAG synthesis:
UDP-GlcA ⟶ UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
UDP-GlcA ⟶ UDP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- A tetrasaccharide linker sequence is required for GAG synthesis:
UDP-GlcA ⟶ UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- A tetrasaccharide linker sequence is required for GAG synthesis:
Gal-Gal-Xyl-proteins + UDP-GlcA ⟶ GlcA-Gal-Gal-Xyl-proteins + UDP
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Abacavir ADME:
AMP + abacavir ⟶ Ade-Rib + xenobiotic
- Abacavir metabolism:
AMP + abacavir ⟶ Ade-Rib + xenobiotic
BioCyc(26)
- teichuronic acid biosynthesis (B. subtilis 168):
N-acetyl-α-D-galactosaminyl-(1→6)-N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol + UDP-α-D-glucuronate ⟶ β-D-glucuronosyl-(1→3)-N-acetyl-α-D-galactosaminyl-(1→6)-N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol + H+ + UDP
- baicalein metabolism:
UDP-α-D-glucose + baicalein ⟶ H+ + UDP + baicalein 7-O-β-D-glucoside
- nicotine degradation III:
H2O + O2 + nicotine-Δ1'5'-iminium ion ⟶ H+ + cotinine + hydrogen peroxide
- saponin biosynthesis II:
UDP-α-D-glucuronate + oleanolate ⟶ H+ + UDP + oleanolate 3 β-D-glucuronoside
- xylan biosynthesis:
UDP-α-D-xylose + a (1→4)-β-D-xylan ⟶ UDP + a (1→4)-β-D-xylan
- xylan biosynthesis:
UDP-β-L-arabinopyranose + a (1→4)-β-D-xylan ⟶ UDP + an arabinoxylan
- α-dystroglycan glycosylation:
UDP-α-D-glucuronate + a 3-O-[α-Xyl-(1→3)-β-GlcA(1→4)-β-Xyl-(1→4)-(Rbo5P)2-3-βGalNAc-(1→3)-βGlucNAc-(1→4)-(P6)-O-αMan]-Ser/Thr-[protein] ⟶ H+ + UDP + a 3-O-[β-GlcA-(1→3)-α-Xyl-(1→3)-β-GlcA(1→4)-β-Xyl-(1→4)-(Rbo5P)2-3-βGalNAc-(1→3)-βGlucNAc-(1→4)-(P6)-O-αMan]-Ser/Thr-[protein]
- α-dystroglycan glycosylation:
UDP-α-D-glucuronate + a 3-O-[α-Xyl-(1→3)-β-GlcA(1→4)-β-Xyl-(1→4)-(Rbo5P)2-3-βGalNAc-(1→3)-βGlucNAc-(1→4)-(P6)-O-αMan]-Ser/Thr-[protein] ⟶ H+ + UDP + a 3-O-[β-GlcA-(1→3)-α-Xyl-(1→3)-β-GlcA(1→4)-β-Xyl-(1→4)-(Rbo5P)2-3-βGalNAc-(1→3)-βGlucNAc-(1→4)-(P6)-O-αMan]-Ser/Thr-[protein]
- superpathway of tryptophan utilization:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- serotonin degradation:
H2O + O2 + serotonin ⟶ 5-hydroxyindole acetaldehyde + ammonium + hydrogen peroxide
- serotonin degradation:
5-hydroxytryptophol + NAD+ ⟶ 5-hydroxyindole acetaldehyde + H+ + NADH
- serotonin degradation:
H2O + O2 + serotonin ⟶ 5-hydroxyindole acetaldehyde + H+ + ammonia + hydrogen peroxide
- superpathway of betalain biosynthesis:
1-O-feruloyl-β-D-glucose + amaranthin ⟶ D-glucopyranose + celosianin II
- amaranthin biosynthesis:
1-O-feruloyl-β-D-glucose + amaranthin ⟶ D-glucopyranose + celosianin II
- thyroid hormone metabolism II (via conjugation and/or degradation):
L-thyroxine + UDP-D-glucuronate ⟶ H+ + L-thyroxine acyl β-D-glucuronide + UDP
- blasticidin S biosynthesis:
CMP + H2O ⟶ D-ribofuranose 5-phosphate + cytosine
- arginomycin biosynthesis:
CMP + H2O ⟶ D-ribofuranose 5-phosphate + cytosine
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- L-ascorbate biosynthesis IV:
L-gulono-1,4-lactone + O2 ⟶ L-xylo-hex-3-ulono-1,4-lactone + hydrogen peroxide
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
WikiPathways(0)
Plant Reactome(223)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-apiose biosynthesis:
H+ + UDP-?-D-glucuronate ⟶ UDP-alpha-D-apiose + carbon dioxide
- Xylan biosynthesis:
(1->4)-beta-D-xylan + UDP-Xyl ⟶ (1->4)-beta-D-xylan + UDP
INOH(0)
PlantCyc(228)
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- saponin biosynthesis II:
UDP-α-D-glucose + oleanolate 3-beta-D-glucuronoside-(3,1)-galactoside ⟶ UDP + oleanolate 3-beta-D-glucuronoside-(3,1)-galactoside-28-glucoside
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + sophoradiol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + soyasapogenol B
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
β-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + sophoradiol
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-glucuronate + soyasapogenol B ⟶ H+ + UDP + soyasapogenol B-3-O-β-glucuronide
- soybean saponin I biosynthesis:
UDP-α-D-galactose + soyasapogenol B-3-O-β-glucuronide ⟶ H+ + UDP + soyasaponin III
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-β-L-arabinopyranose + a (1→4)-β-D-xylan ⟶ UDP + an arabinoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-β-L-arabinopyranose + a (1→4)-β-D-xylan ⟶ UDP + an arabinoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-β-L-arabinopyranose + a (1→4)-β-D-xylan ⟶ UDP + an arabinoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-xylose + a (1→4)-β-D-xylan ⟶ UDP + a (1→4)-β-D-xylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-β-L-arabinopyranose + a (1→4)-β-D-xylan ⟶ UDP + an arabinoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-xylose + a (1→4)-β-D-xylan ⟶ UDP + a (1→4)-β-D-xylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-α-D-glucuronate + a (1→4)-β-D-xylan ⟶ UDP + a glucuronoxylan
- xylan biosynthesis:
UDP-β-L-arabinopyranose + a (1→4)-β-D-xylan ⟶ UDP + an arabinoxylan
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
UDP-α-D-glucose + baicalein ⟶ H+ + UDP + baicalein 7-O-β-D-glucoside
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H2O + baicalin ⟶ D-glucopyranuronate + baicalein
- baicalein metabolism:
H+ + NADPH + O2 + chrysin ⟶ H2O + NADP+ + baicalein
- baicalein metabolism:
H+ + NADPH + O2 + chrysin ⟶ H2O + NADP+ + baicalein
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Ilaria Caon, Arianna Parnigoni, Manuela Viola, Evgenia Karousou, Alberto Passi, Davide Vigetti. Cell Energy Metabolism and Hyaluronan Synthesis.
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
2021 01; 69(1):35-47. doi:
10.1369/0022155420929772
. [PMID: 32623953] - Eva Hansmann, Elvira Mennillo, Emiko Yoda, Mélanie Verreault, Olivier Barbier, Shujuan Chen, Robert H Tukey. Differential Role of Liver X Receptor (LXR) α and LXRβ in the Regulation of UDP-Glucuronosyltransferase 1A1 in Humanized UGT1 Mice.
Drug metabolism and disposition: the biological fate of chemicals.
2020 04; 48(4):255-263. doi:
10.1124/dmd.119.090068
. [PMID: 31980500] - Nuy Chau, Leyla Kaya, Benjamin C Lewis, Peter I Mackenzie, John O Miners. Drug and Chemical Glucosidation by Control Supersomes and Membranes from Spodoptera frugiperda (Sf) 9 Cells: Implications for the Apparent Glucuronidation of Xenobiotics by UDP-glucuronosyltransferase 1A5.
Drug metabolism and disposition: the biological fate of chemicals.
2019 03; 47(3):271-278. doi:
10.1124/dmd.118.084947
. [PMID: 30541877] - Justine Badée, Nahong Qiu, Neil Parrott, Abby C Collier, Stephan Schmidt, Stephen Fowler. Optimization of Experimental Conditions of Automated Glucuronidation Assays in Human Liver Microsomes Using a Cocktail Approach and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry.
Drug metabolism and disposition: the biological fate of chemicals.
2019 02; 47(2):124-134. doi:
10.1124/dmd.118.084301
. [PMID: 30478159] - Davide Vigetti, Manuela Viola, Evgenia Karousou, Giancarlo De Luca, Alberto Passi. Metabolic control of hyaluronan synthases.
Matrix biology : journal of the International Society for Matrix Biology.
2014 Apr; 35(?):8-13. doi:
10.1016/j.matbio.2013.10.002
. [PMID: 24134926] - Nenad Manevski, Jari Yli-Kauhaluoma, Moshe Finel. UDP-glucuronic acid binds first and the aglycone substrate binds second to form a ternary complex in UGT1A9-catalyzed reactions, in both the presence and absence of bovine serum albumin.
Drug metabolism and disposition: the biological fate of chemicals.
2012 Nov; 40(11):2192-203. doi:
10.1124/dmd.112.047746
. [PMID: 22912433] - Mitsuhiro Nishihara, Miyako Sudo, Naohiro Kawaguchi, Junzo Takahashi, Yutaka Kiyota, Takahiro Kondo, Satoru Asahi. An unusual metabolic pathway of sipoglitazar, a novel antidiabetic agent: cytochrome P450-catalyzed oxidation of sipoglitazar acyl glucuronide.
Drug metabolism and disposition: the biological fate of chemicals.
2012 Feb; 40(2):249-58. doi:
10.1124/dmd.111.040105
. [PMID: 22028317] - Nenad Manevski, Paolo Svaluto Moreolo, Jari Yli-Kauhaluoma, Moshe Finel. Bovine serum albumin decreases Km values of human UDP-glucuronosyltransferases 1A9 and 2B7 and increases Vmax values of UGT1A9.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Nov; 39(11):2117-29. doi:
10.1124/dmd.111.041418
. [PMID: 21856742] - Ana I Loureiro, Carlos Fernandes-Lopes, Maria J Bonifácio, Lyndon C Wright, Patricio Soares-da-Silva. Hepatic UDP-glucuronosyltransferase is responsible for eslicarbazepine glucuronidation.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Sep; 39(9):1486-94. doi:
10.1124/dmd.111.038620
. [PMID: 21673130] - Ying-Yin Chen, Tzu-Ping Ko, Chun-Hung Lin, Wei-Hung Chen, Andrew H-J Wang. Conformational change upon product binding to Klebsiella pneumoniae UDP-glucose dehydrogenase: a possible inhibition mechanism for the key enzyme in polymyxin resistance.
Journal of structural biology.
2011 Sep; 175(3):300-10. doi:
10.1016/j.jsb.2011.04.010
. [PMID: 21536136] - Haizheng Hong, Hong Su, Li Ma, Ming Yao, Ramaswamy A Iyer, W Griffith Humphreys, Lisa J Christopher. In vitro characterization of the metabolic pathways and cytochrome P450 inhibition and induction potential of BMS-690514, an ErbB/vascular endothelial growth factor receptor inhibitor.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Sep; 39(9):1658-67. doi:
10.1124/dmd.111.039776
. [PMID: 21673131] - Mukesh K Mahajan, Vinita Uttamsingh, Liang-Shang Gan, Barbara Leduc, David A Williams. Identification and characterization of oxymetazoline glucuronidation in human liver microsomes: evidence for the involvement of UGT1A9.
Journal of pharmaceutical sciences.
2011 Feb; 100(2):784-93. doi:
10.1002/jps.22303
. [PMID: 20669329] - Hee E Kang, Se I Sohn, Seung R Baek, Jee W Lee, Myung G Lee. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of liquiritigenin and its two glucuronides, M1 and M2, in rats.
The Journal of pharmacy and pharmacology.
2011 Jan; 63(1):49-57. doi:
10.1111/j.2042-7158.2010.01175.x
. [PMID: 21155815] - Donglu Zhang, Nirmala Raghavan, Lifei Wang, Yongjun Xue, Mary Obermeier, Stephanie Chen, Shiwei Tao, Hao Zhang, Peter T Cheng, Wenying Li, Ragu Ramanathan, Zheng Yang, W Griffith Humphreys. Plasma stability-dependent circulation of acyl glucuronide metabolites in humans: how circulating metabolite profiles of muraglitazar and peliglitazar can lead to misleading risk assessment.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Jan; 39(1):123-31. doi:
10.1124/dmd.110.035048
. [PMID: 20876787] - Jin Zhou, Timothy S Tracy, Rory P Remmel. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.
Drug metabolism and disposition: the biological fate of chemicals.
2010 Nov; 38(11):1907-11. doi:
10.1124/dmd.110.033829
. [PMID: 20668247] - Isao Horiuchi, Yuya Kato, Arisa Nakamura, Kazuya Ishida, Masato Taguchi, Yukiya Hashimoto. Inhibitory and stimulative effects of amiodarone on metabolism of carvedilol in human liver microsomes.
Biological & pharmaceutical bulletin.
2010; 33(4):717-20. doi:
10.1248/bpb.33.717
. [PMID: 20410613] - Arijit Das, Yixing Zhou, Andrei A Ivanov, Rhonda L Carter, T Kendall Harden, Kenneth A Jacobson. Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition.
Bioconjugate chemistry.
2009 Aug; 20(8):1650-9. doi:
10.1021/bc900206g
. [PMID: 19572637] - Mitch A Phelps, Thomas S Lin, Amy J Johnson, Eunju Hurh, Darlene M Rozewski, Katherine L Farley, Di Wu, Kristie A Blum, Beth Fischer, Sarah M Mitchell, Mollie E Moran, Michelle Brooker-McEldowney, Nyla A Heerema, David Jarjoura, Larry J Schaaf, John C Byrd, Michael R Grever, James T Dalton. Clinical response and pharmacokinetics from a phase 1 study of an active dosing schedule of flavopiridol in relapsed chronic lymphocytic leukemia.
Blood.
2009 Mar; 113(12):2637-45. doi:
10.1182/blood-2008-07-168583
. [PMID: 18981292] - Amrita V Kamath, Jian Wang, Francis Y Lee, Punit H Marathe. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL.
Cancer chemotherapy and pharmacology.
2008 Mar; 61(3):365-76. doi:
10.1007/s00280-007-0478-8
. [PMID: 17429625] - R K Kuester, I G Sipes. Prediction of metabolic clearance of bisphenol A (4,4 '-dihydroxy-2,2-diphenylpropane) using cryopreserved human hepatocytes.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Oct; 35(10):1910-5. doi:
10.1124/dmd.107.014787
. [PMID: 17646283] - Theunis C Goosen, Jonathan N Bauman, John A Davis, Chongwoo Yu, Susan I Hurst, J Andrew Williams, Cho-Ming Loi. Atorvastatin glucuronidation is minimally and nonselectively inhibited by the fibrates gemfibrozil, fenofibrate, and fenofibric acid.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Aug; 35(8):1315-24. doi:
10.1124/dmd.107.015230
. [PMID: 17470524] - Shingo Sakamoto, Hiroyuki Kusuhara, Kenji Miyata, Hiroyuki Shimaoka, Takushi Kanazu, Yumiko Matsuo, Kohji Nomura, Noboru Okamura, Seijiro Hara, Kazutoshi Horie, Takahiko Baba, Yuichi Sugiyama. Glucuronidation converting methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action.
The Journal of pharmacology and experimental therapeutics.
2007 Aug; 322(2):610-8. doi:
10.1124/jpet.106.116426
. [PMID: 17470645] - G S J Mannens, J Hendrickx, C G M Janssen, S Chien, B Van Hoof, T Verhaeghe, M Kao, M F Kelley, I Goris, M Bockx, B Verreet, M Bialer, W Meuldermans. The absorption, metabolism, and excretion of the novel neuromodulator RWJ-333369 (1,2-ethanediol, [1-2-chlorophenyl]-, 2-carbamate, [S]-) in humans.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Apr; 35(4):554-65. doi:
10.1124/dmd.106.011940
. [PMID: 16936066] - Jie Cao, Xiao Chen, Jun Liang, Xue-Qing Yu, An-Long Xu, Eli Chan, Duan Wei, Min Huang, Jing-Yuan Wen, Xi-Yong Yu, Xiao-Tian Li, Fwu-Shan Sheu, Shu-Feng Zhou. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra.
Drug metabolism and disposition: the biological fate of chemicals.
2007 Apr; 35(4):539-53. doi:
10.1124/dmd.106.010801
. [PMID: 17220245] - Hitomi Mori, Kazuhiko Takahashi, Takaharu Mizutani. Interaction between valproic acid and carbapenem antibiotics.
Drug metabolism reviews.
2007; 39(4):647-57. doi:
10.1080/03602530701690341
. [PMID: 18058328] - Zhesheng Chen, Tom G Holt, James V Pivnichny, Kwan Leung. A simple in vitro model to study the stability of acylglucuronides.
Journal of pharmacological and toxicological methods.
2007 Jan; 55(1):91-5. doi:
10.1016/j.vascn.2006.03.008
. [PMID: 16713308] - Hidefumi Kaji, Toshiyuki Kume. Regioselective glucuronidation of denopamine: marked species differences and identification of human udp-glucuronosyltransferase isoform.
Drug metabolism and disposition: the biological fate of chemicals.
2005 Mar; 33(3):403-12. doi:
10.1124/dmd.104.002667
. [PMID: 15608137] - Vanessa Crespy, Nathalie Nancoz, Manuel Oliveira, Jörg Hau, Marie-Claude Courtet-Compondu, Gary Williamson. Glucuronidation of the green tea catechins, (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate, by rat hepatic and intestinal microsomes.
Free radical research.
2004 Sep; 38(9):1025-31. doi:
10.1080/10715760410001728424
. [PMID: 15621722] - Paraskevi Tsoutsikos, John O Miners, Alan Stapleton, Anthony Thomas, Benedetta C Sallustio, Kathleen M Knights. Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7.
Biochemical pharmacology.
2004 Jan; 67(1):191-9. doi:
10.1016/j.bcp.2003.08.025
. [PMID: 14667942] - Gwendolyn E Kuehl, Sharon E Murphy. N-glucuronidation of trans-3'-hydroxycotinine by human liver microsomes.
Chemical research in toxicology.
2003 Dec; 16(12):1502-6. doi:
10.1021/tx034173o
. [PMID: 14680362] - Brian T Ethell, Jens Riedel, Heinrich Englert, Herbert Jantz, Raymond Oekonomopulos, Brian Burchell. Glucuronidation of HMR1098 in human microsomes: evidence for the involvement of UGT1A1 in the formation of S-glucuronides.
Drug metabolism and disposition: the biological fate of chemicals.
2003 Aug; 31(8):1027-34. doi:
10.1124/dmd.31.8.1027
. [PMID: 12867491] - I Yamada, H Fujino, S Shimada, J Kojima. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: similarities and difference in the metabolism of pitavastatin in monkeys and humans.
Xenobiotica; the fate of foreign compounds in biological systems.
2003 Jul; 33(7):789-803. doi:
10.1080/0049825031000121635
. [PMID: 12893526] - Omar Ghosheh, Edward M Hawes. Microsomal N-glucuronidation of nicotine and cotinine: human hepatic interindividual, human intertissue, and interspecies hepatic variation.
Drug metabolism and disposition: the biological fate of chemicals.
2002 Dec; 30(12):1478-83. doi:
10.1124/dmd.30.12.1478
. [PMID: 12433822] - Shufeng Zhou, Philip Kestell, James W Paxton. Predicting pharmacokinetics and drug interactions in patients from in vitro and in vivo models: the experience with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an anti-cancer drug eliminated mainly by conjugation.
Drug metabolism reviews.
2002 Nov; 34(4):751-90. doi:
10.1081/dmr-120015693
. [PMID: 12487149] - Ho-Yon Hwang, H Robert Horvitz. The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development.
Proceedings of the National Academy of Sciences of the United States of America.
2002 Oct; 99(22):14218-23. doi:
10.1073/pnas.172522199
. [PMID: 12391314] - Thomayant Prueksaritanont, Raju Subramanian, Xiaojun Fang, Bennett Ma, Yue Qiu, Jiunn H Lin, Paul G Pearson, Thomas A Baillie. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization.
Drug metabolism and disposition: the biological fate of chemicals.
2002 May; 30(5):505-12. doi:
10.1124/dmd.30.5.505
. [PMID: 11950779] - Nariyasu Mano, Koji Nishimura, Takashi Narui, Shigeo Ikegawa, Junichi Goto. Characterization of rat liver bile acid acyl glucuronosyltransferase.
Steroids.
2002 Mar; 67(3-4):257-62. doi:
10.1016/s0039-128x(01)00162-3
. [PMID: 11856549] - A Basu, R Basu, P Shah, A Vella, C M Johnson, M Jensen, K S Nair, W F Schwenk, R A Rizza. Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: additional evidence for a defect in hepatic glucokinase activity.
Diabetes.
2001 Jun; 50(6):1351-62. doi:
10.2337/diabetes.50.6.1351
. [PMID: 11375336] - P Berninsone, H Y Hwang, I Zemtseva, H R Horvitz, C B Hirschberg. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose.
Proceedings of the National Academy of Sciences of the United States of America.
2001 Mar; 98(7):3738-43. doi:
10.1073/pnas.061593098
. [PMID: 11259660] - M Cappiello, L Giuliani, A Rane, G M Pacifici. Uridine 5'-diphosphoglucuronic acid (UDPGLcUA) in the human fetal liver, kidney and placenta.
European journal of drug metabolism and pharmacokinetics.
2000 Jul; 25(3-4):161-3. doi:
10.1007/bf03192308
. [PMID: 11420884] - M C Tsai, J W Gorrod. Evidence for the biosynthesis of A glucuronide conjugate of (S)-(-)-nicotine, but not (S)-(-)-cotinine or (+/-)-trans-3'-hydroxycotinine by marmoset hepatic microsomes.
Drug metabolism and drug interactions.
1999; 15(4):223-37. doi:
10.1515/dmdi.1999.15.4.223
. [PMID: 10716038] - B T Zhu, J Lech, R T Rosen, A H Conney. Effect of dietary 2(3)-tert-butyl-4-hydroxyanisole on the metabolism and action of estradiol and estrone in female CD-1 mice.
Cancer research.
1997 Jun; 57(12):2419-27. doi:
. [PMID: 9192820]
- N M Malinowski, R L Cysyk, E M August. A filter paper assay for hyaluronic acid synthetase: application to the enzyme from Swiss 3T3 fibroblasts.
Biochemistry and molecular biology international.
1995 Apr; 35(5):1123-32. doi:
. [PMID: 7549931]
- R Chorné, C Mendoza, J Pisanty, N Castro, A Loría. [Increase of conjugated bilirubin in diabetics].
Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion.
1994 May; 46(3):237-9. doi:
NULL
. [PMID: 7973148] - J Liu, Y Liu, C Madhu, C D Klaassen. Protective effects of oleanolic acid on acetaminophen-induced hepatotoxicity in mice.
The Journal of pharmacology and experimental therapeutics.
1993 Sep; 266(3):1607-13. doi:
. [PMID: 8371159]
- G Bánhegyi, T Garzó, R Fulceri, A Benedetti, J Mandl. Latency is the major determinant of UDP-glucuronosyltransferase activity in isolated hepatocytes.
FEBS letters.
1993 Aug; 328(1-2):149-52. doi:
10.1016/0014-5793(93)80983-2
. [PMID: 8393805] - M F Grubb, J Kasofsky, J Strong, L W Anderson, R L Cysyk. Serum stimulation of UDP-glucose dehydrogenase activity in Swiss 3T3 fibroblasts.
Biochemistry and molecular biology international.
1993 Aug; 30(5):819-27. doi:
NULL
. [PMID: 8220234] - E M August, K L Duncan, N M Malinowski, R L Cysyk. Inhibition of fibroblast hyaluronic acid production by suramin.
Oncology research.
1993; 5(10-11):415-22. doi:
NULL
. [PMID: 8054702] - E M Cretton, M Y Xie, N M Goudgaon, R F Schinazi, C K Chu, J P Sommadossi. Catabolic disposition of 3'-azido-2',3'-dideoxyuridine in hepatocytes with evidence of azido reduction being a general catabolic pathway of 3'-azido-2',3'-dideoxynucleosides.
Biochemical pharmacology.
1992 Sep; 44(5):973-80. doi:
10.1016/0006-2952(92)90130-b
. [PMID: 1326966] - S R Babu, V M Lakshmi, F F Hsu, T V Zenser, B B Davis. Role of N-glucuronidation in benzidine-induced bladder cancer in dog.
Carcinogenesis.
1992 Jul; 13(7):1235-40. doi:
10.1093/carcin/13.7.1235
. [PMID: 1638692] - Y Adachi, T Kamisako, T Yamamoto. The effects of temporary occlusion of the superior mesenteric vein or splenic vein on biliary bilirubin and bile acid excretion in rats.
The Journal of laboratory and clinical medicine.
1991 Sep; 118(3):261-8. doi:
. [PMID: 1919299]
- M H Davies, R C Schnell. Oltipraz-induced amelioration of acetaminophen hepatotoxicity in hamsters. II. Competitive shunt in metabolism via glucuronidation.
Toxicology and applied pharmacology.
1991 Jun; 109(1):29-40. doi:
10.1016/0041-008x(91)90188-k
. [PMID: 2038747] - M Cappiello, L Giuliani, G M Pacifici. Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5'-diphosphoglucuronic acid in human tissues.
European journal of clinical pharmacology.
1991; 41(4):345-50. doi:
10.1007/bf00314965
. [PMID: 1804651] - G F Bories, E F Perdu-Durand, J F Sutra, J E Tulliez. Evidence for glucuronidation and sulfation of zeranol and metabolites (taleranol and zearalanone) by rat and pig hepatic subfractions.
Drug metabolism and disposition: the biological fate of chemicals.
1991 Jan; 19(1):140-3. doi:
NULL
. [PMID: 1673387] - G E Henderson, R M Mason. Stimulation of chondrocyte UDP-glucuronate pools by a serum component.
Biochemical Society transactions.
1990 Oct; 18(5):966. doi:
10.1042/bst0180966
. [PMID: 2083771] - P C Smith, L Z Benet, A F McDonagh. Covalent binding of zomepirac glucuronide to proteins: evidence for a Schiff base mechanism.
Drug metabolism and disposition: the biological fate of chemicals.
1990 Sep; 18(5):639-44. doi:
NULL
. [PMID: 1981713] - D W Zaharevitz, C A Chisena, R L Cysyk. Rapid increase of cellular UDP-glucuronide after mitogen stimulation of quiescent 3T3 mouse fibroblasts.
Biochemistry international.
1990; 20(6):1067-76. doi:
NULL
. [PMID: 2196057] - Z Gregus, C Madhu, D Goon, C D Klaassen. Effect of galactosamine-induced hepatic UDP-glucuronic acid depletion on acetaminophen elimination in rats. Dispositional differences between hepatically and extrahepatically formed glucuronides of acetaminophen and other chemicals.
Drug metabolism and disposition: the biological fate of chemicals.
1988 Jul; 16(4):527-33. doi:
. [PMID: 2903018]
- Z Gregus, C D Klaassen. Effect of butylated hydroxyanisole on hepatic glucuronidation and biliary excretion of drugs in mice.
The Journal of pharmacy and pharmacology.
1988 Apr; 40(4):237-42. doi:
10.1111/j.2042-7158.1988.tb05235.x
. [PMID: 2900301] - S J Borghoff, S A Stefanski, L S Birnbaum. The effect of age on the glucuronidation and toxicity of 4,4'-thiobis(6-t-butyl-m-cresol).
Toxicology and applied pharmacology.
1988 Mar; 92(3):453-66. doi:
10.1016/0041-008x(88)90185-8
. [PMID: 3127943] - J T Hjelle, J J Hjelle, T J Maziasz, F A Carone. Diphenylthiazole-induced changes in renal ultrastructure and enzymology: toxicologic mechanisms in polycystic kidney disease?.
The Journal of pharmacology and experimental therapeutics.
1987 Nov; 243(2):758-66. doi:
. [PMID: 3119818]
- N Mian. Characterization of a high-Mr plasma-membrane-bound protein and assessment of its role as a constituent of hyaluronate synthase complex.
The Biochemical journal.
1986 Jul; 237(2):343-57. doi:
10.1042/bj2370343
. [PMID: 3099752] - P Cortes, F Dumler, N W Levin. De novo pyrimidine nucleotide biosynthesis in isolated rat glomeruli.
Kidney international.
1986 Jul; 30(1):27-34. doi:
10.1038/ki.1986.146
. [PMID: 3747340] - G A Hazelton, J J Hjelle, C D Klaassen. Effects of butylated hydroxyanisole on acetaminophen hepatotoxicity and glucuronidation in vivo.
Toxicology and applied pharmacology.
1986 May; 83(3):474-85. doi:
10.1016/0041-008x(86)90230-9
. [PMID: 3085287] - H W Ruelius, S K Kirkman, E M Young, F W Janssen. Reactions of oxaprozin-1-O-acyl glucuronide in solutions of human plasma and albumin.
Advances in experimental medicine and biology.
1986; 197(?):431-41. doi:
10.1007/978-1-4684-5134-4_42
. [PMID: 3766273] - L K Griffeth, G M Rosen, E J Rauckman. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV. Glucuronidation.
Drug metabolism and disposition: the biological fate of chemicals.
1985 Jul; 13(4):391-7. doi:
. [PMID: 2863100]
- G A Hazelton, J J Hjelle, C D Klaassen. Effects of butylated hydroxyanisole on hepatic glucuronidation capacity in mice.
Toxicology and applied pharmacology.
1985 Apr; 78(2):280-90. doi:
10.1016/0041-008x(85)90291-1
. [PMID: 3929427] - J Fevery. The bilirubin diglucuronide controversy.
Journal of hepatology.
1985; 1(4):437-42. doi:
10.1016/s0168-8278(85)80781-9
. [PMID: 3932512] - J J Hjelle, G A Hazelton, C D Klaassen. Acetaminophen decreases adenosine 3'-phosphate 5'-phosphosulfate and uridine diphosphoglucuronic acid in rat liver.
Drug metabolism and disposition: the biological fate of chemicals.
1985 Jan; 13(1):35-41. doi:
. [PMID: 2858374]
- H T Cuypers, E M ter Haar, P L Jansen. UDP-glucuronyltransferase-catalyzed deconjugation of bilirubin monoglucuronide.
Hepatology (Baltimore, Md.).
1984 Sep; 4(5):918-22. doi:
10.1002/hep.1840040522
. [PMID: 6434392] - C Schiessel, C Forsthove, D Keppler. 45Calcium uptake during the transition from reversible to irreversible liver injury induced by D-galactosamine in vivo.
Hepatology (Baltimore, Md.).
1984 Sep; 4(5):855-61. doi:
10.1002/hep.1840040510
. [PMID: 6207090] - B Antoine, J Magdalou, G Siest. Kinetic properties of UDP-glucuronosyltransferase(S) in different membranes of rat liver cells.
Xenobiotica; the fate of foreign compounds in biological systems.
1984 Jul; 14(7):575-9. doi:
10.3109/00498258409151451
. [PMID: 6438924] - P Prehm. Hyaluronate is synthesized at plasma membranes.
The Biochemical journal.
1984 Jun; 220(2):597-600. doi:
10.1042/bj2200597
. [PMID: 6743290] - E R Gordon, P J Meier, C A Goresky, J L Boyer. Mechanism and subcellular site of bilirubin diglucuronide formation in rat liver.
The Journal of biological chemistry.
1984 May; 259(9):5500-6. doi:
. [PMID: 6715357]
- M Ikeda, H Hattori, Y Koyama, S Ohmori. Determination of urochloralic acid, the glucuronic acid conjugate of trichloroethanol, by gas chromatography with electron-capture detection and its application to urine, plasma and liver.
Journal of chromatography.
1984 Apr; 307(1):111-9. doi:
10.1016/s0378-4347(00)84077-3
. [PMID: 6725477] - N A Mokhort, N N Nazarenko, V I Kondratiuk. [Pharmacological properties of pyrazolone and pyrazolidine derivatives (review of the literature)].
Vrachebnoe delo.
1984 Mar; ?(3):39-45. doi:
NULL
. [PMID: 6372242] - Z Gregus, J B Watkins, T N Thompson, C D Klaassen. Depletion of hepatic uridine diphosphoglucuronic acid decreases the biliary excretion of drugs.
The Journal of pharmacology and experimental therapeutics.
1983 May; 225(2):256-62. doi:
. [PMID: 6405026]
- J B Watkins, C D Klaassen. Chemically-induced alteration of UDP-glucuronic acid concentration in rat liver.
Drug metabolism and disposition: the biological fate of chemicals.
1983 Jan; 11(1):37-40. doi:
. [PMID: 6132793]
- C M Schiller, C S Dieringer, M E Twine, A R Jeffcoat. Determination of tissue UDP-glucuronic acid levels by high-pressure liquid chromatography.
Analytical biochemistry.
1982 Nov; 127(1):68-72. doi:
10.1016/0003-2697(82)90145-2
. [PMID: 7165094] - J B Watkins, C D Klaassen. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat.
The Journal of pharmacology and experimental therapeutics.
1982 Feb; 220(2):305-10. doi:
NULL
. [PMID: 6799642] - A Sieg, G P van Hees, K P Heirwegh. Uridine diphosphate-glucuronic acid-independent conversion of bilirubin monoglucuronides to diglucuronide in presence of plasma membranes from rat liver is nonenzymic.
The Journal of clinical investigation.
1982 Feb; 69(2):347-57. doi:
10.1172/jci110458
. [PMID: 7056852] - S L Longacre, J J Koćsis, C M Witmer, R Snyder. Urinary metabolites of benzene in the mouse.
Advances in experimental medicine and biology.
1981; 136 Pt A(?):307-77. doi:
10.1007/978-1-4757-0674-1_18
. [PMID: 7344463] - K Den, H Matsumoto, K Fujii, K Furuya, T Yoshida, S Takagi, A Kanbegawa, T Kokubu. A radioimmunoassay of plasma unconjugated and conjugated estetrol.
Steroids.
1977 Oct; 30(4):521-9. doi:
10.1016/0039-128x(77)90097-6
. [PMID: 204082] - K P Wong. Measurement of nanogram quantities of UDP-glucuronic acid in tissues.
Analytical biochemistry.
1977 Oct; 82(2):559-63. doi:
10.1016/0003-2697(77)90194-4
. [PMID: 410328] - R Myllylä. Studies on the mechanism of collagen glucosyltransferase reaction.
European journal of biochemistry.
1976 Nov; 70(1):225-31. doi:
10.1111/j.1432-1033.1976.tb10973.x
. [PMID: 1009926] - C Fenselau, S Pallante, E Parikh. Solid-phase synthesis of drug glucuronides by immobilized glucuronosyltransferase.
Journal of medicinal chemistry.
1976 May; 19(5):679-83. doi:
10.1021/jm00227a020
. [PMID: 818382] - M PULKKINEN, L RAURAMO. The effect of serum from pregnant and non-pregnant women on UDPGA-transferase and on the O-aminophenol glucuronide formation.
Annales medicinae experimentalis et biologiae Fenniae.
1963; 41(?):38-40. doi:
NULL
. [PMID: 13972502] - G J DUTTON, I H STEVENSON. Synthesis of glucuronides and of uridine diphosphate glucuronic acid in kidney cortex and gastric mucosa.
Biochimica et biophysica acta.
1959 Feb; 31(2):568-9. doi:
10.1016/0006-3002(59)90043-5
. [PMID: 13628696]