Sn-glycerol 3-phosphate(2-) (BioDeep_00000897302)
代谢物信息卡片
化学式: C3H7O6P-2 (169.998)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 96.55%
分子结构信息
SMILES: C(C(COP(=O)([O-])[O-])O)O
InChI: InChI=1S/C3H9O6P/c4-1-3(5)2-9-10(6,7)8/h3-5H,1-2H2,(H2,6,7,8)/p-2/t3-/m1/s1
描述信息
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(6)
BioCyc(8)
- 1,3-propanediol biosynthesis (engineered)
- poly(3-O-β-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
- diacylglycerol and triacylglycerol biosynthesis
- cardiolipin biosynthesis II
- phosphatidylglycerol biosynthesis II (non-plastidic)
- nitrate reduction IX (dissimilatory)
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to fumarate electron transfer
PlantCyc(7)
代谢反应
431 个相关的代谢反应过程信息。
Reactome(89)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- PI Metabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Glycerophospholipid catabolism:
H2O + LysoPtdCho ⟶ GPCho + LCFA(-)
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride biosynthesis:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Triglyceride metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride biosynthesis:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Triglyceride metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride biosynthesis:
ATP + Glycerol ⟶ ADP + G3P
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride metabolism:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Triglyceride biosynthesis:
Oxygen + Tetrahydrobiopterin + alkylglycerol ⟶ Glycerol + H2O + dihydrobiopterin + fatty aldehyde
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Hydrolysis of LPC:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
BioCyc(93)
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + ubiquinone-6 ⟶ DHAP + ubiquinol
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- nitrate reduction X (dissimilatory, periplasmic):
H+ + a reduced [NapC protein] + nitrate ⟶ H2O + an oxidized [NapC protein] + nitrite
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + MQ ⟶ DHAP + MQH2
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- nitrate reduction X (dissimilatory, periplasmic):
H+ + a reduced [NapC protein] + nitrate ⟶ H2O + an oxidized [NapC protein] + nitrite
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer:
H+ + O2 + UQH2 ⟶ H+ + H2O + UQ
- nitrate reduction X (dissimilatory, periplasmic):
H+ + a reduced [NapC protein] + nitrate ⟶ H2O + an oxidized [NapC protein] + nitrite
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ UQH2 + dihydroxyacetone phosphate
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- nitrate reduction X (dissimilatory, periplasmic):
H+ + a reduced [NapC protein] + nitrate ⟶ H2O + an oxidized [NapC protein] + nitrite
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerophosphodiester degradation:
sn-glycerol-3-phosphate + UQ ⟶ UQH2 + dihydroxyacetone phosphate
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerophosphodiester degradation:
sn-glycerol-3-phosphate + UQ ⟶ UQH2 + dihydroxyacetone phosphate
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerophosphodiester degradation:
sn-glycerol-3-phosphate + UQ ⟶ UQH2 + dihydroxyacetone phosphate
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + UQ ⟶ DHAP + UQH2
- glycerol degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- 1,3-propanediol biosynthesis (engineered):
1,3-propanediol + NADP+ ⟶ 3-hydroxypropionaldehyde + H+ + NADPH
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol degradation IV:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation IV:
ATP + glycerol ⟶ sn-glycerol-3-phosphate + ADP + H+
- glycerol degradation:
glycerol (outside) ⟶ glycerol
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol and glycerophosphodiester degradation:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- cardiolipin biosynthesis II:
a CDP-diacylglycerol + an L-1-phosphatidyl-sn-glycerol ⟶ CMP + H+ + a cardiolipin
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + a CDP-diacylglycerol ⟶ 1-(3-sn-phosphatidyl)-sn-glycerol 3-phosphate + CMP + H+
- cardiolipin biosynthesis II:
a CDP-diacylglycerol + an L-1-phosphatidyl-sn-glycerol ⟶ CMP + H+ + a cardiolipin
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + a CDP-diacylglycerol ⟶ 1-(3-sn-phosphatidyl)-sn-glycerol 3-phosphate + CMP + H+
- phosphatidylcholine resynthesis via glycerophosphocholine:
H2O + a phosphatidylcholine ⟶ sn-glycero-3-phosphocholine + H+ + a carboxylate
- phosphatidylcholine resynthesis via glycerophosphocholine:
sn-glycero-3-phosphocholine + H2O ⟶ sn-glycerol 3-phosphate + H+ + choline
- phosphatidylcholine resynthesis via glycerophosphocholine:
sn-glycero-3-phosphocholine + H2O ⟶ sn-glycerol 3-phosphate + H+ + choline
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
- respiration (anaerobic)-- electron donors reaction list:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- aerobic respiration -- electron donors reaction list:
UQ + succinate ⟶ UQH2 + fumarate
WikiPathways(2)
- Glycerophospholipid biosynthetic pathway:
Serine ⟶ Ethanolamine
- Glycerophospholipid biosynthetic pathway:
Glycerol ⟶ sn-glycerol-3-phosphate (glycerol-3-P)
Plant Reactome(5)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Glycerol degradation I:
ATP + Glycerol ⟶ ADP + G3P
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA biosynthesis I:
CH3COO- + indole ⟶ IAA
INOH(0)
PlantCyc(241)
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
H2O + a glycerophosphodiester ⟶ sn-glycerol 3-phosphate + H+ + an alcohol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
H2O + a glycerophosphodiester ⟶ sn-glycerol 3-phosphate + H+ + an alcohol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerol degradation I:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- superpathway of phospholipid biosynthesis II (plants):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- cardiolipin biosynthesis II:
sn-glycerol 3-phosphate + a CDP-diacylglycerol ⟶ CMP + H+ + a phosphatidylglycerophosphate
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + a CDP-diacylglycerol ⟶ CMP + H+ + a phosphatidylglycerophosphate
- cardiolipin biosynthesis II:
a CDP-diacylglycerol + a phosphatidylglycerol ⟶ CMP + H+ + Ptd2Gro
- superpathway of phospholipid biosynthesis II (plants):
myo-inositol + a CDP-diacylglycerol ⟶ CMP + H+ + a 1-phosphatidyl-1D-myo-inositol
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + a CDP-diacylglycerol ⟶ CMP + H+ + a phosphatidylglycerophosphate
- phosphatidylglycerol biosynthesis I (plastidic):
sn-glycerol 3-phosphate + a CDP-diacylglycerol ⟶ 1-(3-sn-phosphatidyl)-sn-glycerol 3-phosphate + CMP + H+
- phosphatidylcholine resynthesis via glycerophosphocholine:
H2O + a phosphatidylcholine ⟶ sn-glycero-3-phosphocholine + H+ + a carboxylate
- phosphatidylcholine resynthesis via glycerophosphocholine:
H2O + a phosphatidylcholine ⟶ sn-glycero-3-phosphocholine + H+ + a carboxylate
- phosphatidylcholine resynthesis via glycerophosphocholine:
H2O + a phosphatidylcholine ⟶ sn-glycero-3-phosphocholine + H+ + a carboxylate
- phosphatidylcholine resynthesis via glycerophosphocholine:
H2O + a phosphatidylcholine ⟶ sn-glycero-3-phosphocholine + H+ + a carboxylate
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerophosphodiester degradation:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- triacylglycerol biosynthesis (Chlamydomonas):
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- CDP-diacylglycerol biosynthesis I:
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol 3-phosphate + NAD(P)+ ⟶ DHAP + H+ + NAD(P)H
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Pilar Garcia-Jimenez, Diana Del Rosario-Santana, Rafael R Robaina. Jasmonates and Ethylene Shape Floridoside Synthesis during Carposporogenesis in the Red Seaweed Grateloupia imbricata.
Marine drugs.
2024 Feb; 22(3):. doi:
10.3390/md22030115
. [PMID: 38535456] - Khaled Tighanimine, José Américo Nabuco Leva Ferreira Freitas, Ivan Nemazanyy, Alexia Bankolé, Delphine Benarroch-Popivker, Susanne Brodesser, Gregory Doré, Lucas Robinson, Paule Benit, Sophia Ladraa, Yara Bou Saada, Bertrand Friguet, Philippe Bertolino, David Bernard, Guillaume Canaud, Pierre Rustin, Eric Gilson, Oliver Bischof, Stefano Fumagalli, Mario Pende. A homoeostatic switch causing glycerol-3-phosphate and phosphoethanolamine accumulation triggers senescence by rewiring lipid metabolism.
Nature metabolism.
2024 Feb; 6(2):323-342. doi:
10.1038/s42255-023-00972-y
. [PMID: 38409325] - Shiva Kumar Angala, Ana Carreras-Gonzalez, Emilie Huc-Claustre, Itxaso Anso, Devinder Kaur, Victoria Jones, Zuzana Palčeková, Juan M Belardinelli, Célia de Sousa-d'Auria, Libin Shi, Nawel Slama, Christine Houssin, Annaïk Quémard, Michael McNeil, Marcelo E Guerin, Mary Jackson. Acylation of glycerolipids in mycobacteria.
Nature communications.
2023 10; 14(1):6694. doi:
10.1038/s41467-023-42478-x
. [PMID: 37872138] - Y Chen, H B Shi, W L Le, Q N Tang. [Effect of calcium-independent phospholipase A2 on the expression of glycerol 3-phosphate dehydrogenase in human non-alcoholic fatty liver disease cells].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2023 Oct; 31(10):1063-1067. doi:
10.3760/cma.j.cn501113-20220724-00394
. [PMID: 38016771] - Superior Syngkli, Bidyadhar Das. Purification and characterization of human glycerol 3-phosphate dehydrogenases (mitochondrial and cytosolic) by NAD+/NADH redox method.
Biochimie.
2023 Jul; ?(?):. doi:
10.1016/j.biochi.2023.07.015
. [PMID: 37481063] - Urszula Łapińska, Georgina Glover, Zehra Kahveci, Nicholas A T Irwin, David S Milner, Maxime Tourte, Sonja-Verena Albers, Alyson E Santoro, Thomas A Richards, Stefano Pagliara. Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes.
PLoS biology.
2023 04; 21(4):e3002048. doi:
10.1371/journal.pbio.3002048
. [PMID: 37014915] - Jianzhi Zhang, Tuo Li, Zhilai Hong, Chenfei Ma, Xiaoting Fang, Fengfeng Zheng, Wenkai Teng, Chuanlun Zhang, Tong Si. Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae.
Angewandte Chemie (International ed. in English).
2023 01; 62(4):e202214344. doi:
10.1002/anie.202214344
. [PMID: 36424352] - Diana X Sahonero-Canavesi, Melvin F Siliakus, Alejandro Abdala Asbun, Michel Koenen, F A Bastiaan von Meijenfeldt, Sjef Boeren, Nicole J Bale, Julia C Engelman, Kerstin Fiege, Lora Strack van Schijndel, Jaap S Sinninghe Damsté, Laura Villanueva. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria.
Science advances.
2022 12; 8(50):eabq8652. doi:
10.1126/sciadv.abq8652
. [PMID: 36525503] - Anfal Al-Mass, Pegah Poursharifi, Marie-Line Peyot, Roxane Lussier, Isabelle Chenier, Yat Hei Leung, Anindya Ghosh, Abel Oppong, Elite Possik, Yves Mugabo, Rasheed Ahmad, Robert Sladek, S R Murthy Madiraju, Fahd Al-Mulla, Marc Prentki. Hepatic glycerol shunt and glycerol-3-phosphate phosphatase control liver metabolism and glucodetoxification under hyperglycemia.
Molecular metabolism.
2022 12; 66(?):101609. doi:
10.1016/j.molmet.2022.101609
. [PMID: 36198384] - Aardra Kachroo, Huazhen Liu, Xinyu Yuan, Tatsushi Kurokawa, Pradeep Kachroo. Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate.
Essays in biochemistry.
2022 09; 66(5):673-681. doi:
10.1042/ebc20210098
. [PMID: 35920211] - Buse Ozer Bekmez, Serife Suna Oguz. Early vs late initiation of sodium glycerophosphate: Impact on hypophosphatemia in preterm infants <32 weeks.
Clinical nutrition (Edinburgh, Scotland).
2022 02; 41(2):415-423. doi:
10.1016/j.clnu.2021.12.011
. [PMID: 35007810] - Elite Possik, Clémence Schmitt, Anfal Al-Mass, Ying Bai, Laurence Côté, Johanne Morin, Heidi Erb, Abel Oppong, Wahab Kahloan, J Alex Parker, S R Murthy Madiraju, Marc Prentki. Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans.
Nature communications.
2022 01; 13(1):177. doi:
10.1038/s41467-021-27803-6
. [PMID: 35017476] - Yin Zhang, Naiwang Tang, Jinjie Zhou. Intermedin1‑47 inhibits high phosphate‑induced vascular smooth muscle cell calcification by regulating Wnt/β‑catenin signaling.
Molecular medicine reports.
2021 Oct; 24(4):. doi:
10.3892/mmr.2021.12373
. [PMID: 34414455] - YuJin Noh, Hwanhui Lee, Myeongsun Kim, Seong-Joo Hong, Hookeun Lee, Dong-Myung Kim, Byung-Kwan Cho, Choul-Gyun Lee, Hyung-Kyoon Choi. Enhanced Production of Photosynthetic Pigments and Various Metabolites and Lipids in the Cyanobacteria Synechocystis sp. PCC 7338 Culture in the Presence of Exogenous Glucose.
Biomolecules.
2021 02; 11(2):. doi:
10.3390/biom11020214
. [PMID: 33546462] - James R Krycer, Lake-Ee Quek, Deanne Francis, Armella Zadoorian, Fiona C Weiss, Kristen C Cooke, Marin E Nelson, Alexis Diaz-Vegas, Sean J Humphrey, Richard Scalzo, Akiyoshi Hirayama, Satsuki Ikeda, Futaba Shoji, Kumi Suzuki, Kevin Huynh, Corey Giles, Bianca Varney, Shilpa R Nagarajan, Andrew J Hoy, Tomoyoshi Soga, Peter J Meikle, Gregory J Cooney, Daniel J Fazakerley, David E James. Insulin signaling requires glucose to promote lipid anabolism in adipocytes.
The Journal of biological chemistry.
2020 09; 295(38):13250-13266. doi:
10.1074/jbc.ra120.014907
. [PMID: 32723868] - Gábor Tasnádi, Marcin Staśko, Klaus Ditrich, Mélanie Hall, Kurt Faber. Preparative-Scale Enzymatic Synthesis of rac-Glycerol-1-phosphate from Crude Glycerol Using Acid Phosphatases and Phosphate.
ChemSusChem.
2020 Apr; 13(7):1759-1763. doi:
10.1002/cssc.201903236
. [PMID: 31944595] - Petra Simic, Wondong Kim, Wen Zhou, Kerry A Pierce, Wenhan Chang, David B Sykes, Najihah B Aziz, Sammy Elmariah, Debby Ngo, Paola Divieti Pajevic, Nicolas Govea, Bryan R Kestenbaum, Ian H de Boer, Zhiqiang Cheng, Marta Christov, Jerold Chun, David E Leaf, Sushrut S Waikar, Andrew M Tager, Robert E Gerszten, Ravi I Thadhani, Clary B Clish, Harald Jüppner, Marc N Wein, Eugene P Rhee. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney.
The Journal of clinical investigation.
2020 03; 130(3):1513-1526. doi:
10.1172/jci131190
. [PMID: 32065590] - Jonghwa Lee, Neale D Ridgway. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 01; 1865(1):158438. doi:
10.1016/j.bbalip.2019.03.010
. [PMID: 30959116] - Soshi Takahashi, Jun Saegusa, Akira Onishi, Akio Morinobu. Biomarkers identified by serum metabolomic analysis to predict biologic treatment response in rheumatoid arthritis patients.
Rheumatology (Oxford, England).
2019 12; 58(12):2153-2161. doi:
10.1093/rheumatology/kez199
. [PMID: 31143951] - M B Shine, Qing-Ming Gao, R V Chowda-Reddy, Asheesh K Singh, Pradeep Kachroo, Aardra Kachroo. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean.
Nature communications.
2019 11; 10(1):5303. doi:
10.1038/s41467-019-13318-8
. [PMID: 31757957] - Naoki Nemoto, Ken Ichi Miyazono, Masaru Tanokura, Akihiko Yamagishi. Crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase from Thermoplasma acidophilum in complex with the substrate sn-glycerol 1-phosphate.
Acta crystallographica. Section F, Structural biology communications.
2019 Jul; 75(Pt 7):470-479. doi:
10.1107/s2053230x19007453
. [PMID: 31282866] - Ling Zhang, Fen Chen, Jiatong Zheng, Hongwei Wang, Xingjun Qin, Weisan Pan. Chitosan-based liposomal thermogels for the controlled delivery of pingyangmycin: design, optimization and in vitro and in vivo studies.
Drug delivery.
2018 Nov; 25(1):690-702. doi:
10.1080/10717544.2018.1444684
. [PMID: 29484910] - Rana Sagnak, Sandrine Cochot, Carole Molina-Jouve, Jean-Marc Nicaud, Stéphane E Guillouet. Modulation of the Glycerol Phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica.
Journal of biotechnology.
2018 Jan; 265(?):40-45. doi:
10.1016/j.jbiotec.2017.11.001
. [PMID: 29102548] - Elite Possik, S R Murthy Madiraju, Marc Prentki. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases.
Biochimie.
2017 Dec; 143(?):18-28. doi:
10.1016/j.biochi.2017.08.001
. [PMID: 28826615] - Luís Crisóstomo, Marco G Alves, Giuseppe Calamita, Mário Sousa, Pedro F Oliveira. Glycerol and testicular activity: the good, the bad and the ugly.
Molecular human reproduction.
2017 11; 23(11):725-737. doi:
10.1093/molehr/gax049
. [PMID: 28961924] - Steven M Dragos, Karl F Bergeron, Frédérik Desmarais, Katherine Suitor, David C Wright, Catherine Mounier, David M Mutch. Reduced SCD1 activity alters markers of fatty acid reesterification, glyceroneogenesis, and lipolysis in murine white adipose tissue and 3T3-L1 adipocytes.
American journal of physiology. Cell physiology.
2017 Sep; 313(3):C295-C304. doi:
10.1152/ajpcell.00097.2017
. [PMID: 28659287] - Jian Ji, Pei Zhu, Fangchao Cui, Fuwei Pi, Yinzhi Zhang, Xiulan Sun. The disorder metabolic profiling in kidney and spleen of mice induced by mycotoxins deoxynivalenol through gas chromatography mass spectrometry.
Chemosphere.
2017 Aug; 180(?):267-274. doi:
10.1016/j.chemosphere.2017.03.129
. [PMID: 28411543] - Judith-Irina Pagel, Nikolai Hulde, Tobias Kammerer, Michaela Schwarz, Daniel Chappell, Alexander Burges, Klaus Hofmann-Kiefer, Markus Rehm. The impact of phosphate-balanced crystalloid infusion on acid-base homeostasis (PALANCE study): study protocol for a randomized controlled trial.
Trials.
2017 07; 18(1):313. doi:
10.1186/s13063-017-2051-z
. [PMID: 28693594] - Ali Mazouri, Nastaran Khosravi, Arash Bordbar, Nasrin Khalesi, Maryam Saboute, Pegah Taherifard, Marjan Mirzababaee, Mehran Ebrahimi. Does Adding Intravenous Phosphorus to Parenteral Nutrition Has Any Effects on Calcium and Phosphorus Metabolism and Bone Mineral Content in Preterm Neonates?.
Acta medica Iranica.
2017 Jun; 55(6):395-398. doi:
NULL
. [PMID: 28843241] - Yves Mugabo, Shangang Zhao, Julien Lamontagne, Anfal Al-Mass, Marie-Line Peyot, Barbara E Corkey, Erik Joly, S R Murthy Madiraju, Marc Prentki. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells.
The Journal of biological chemistry.
2017 05; 292(18):7407-7422. doi:
10.1074/jbc.m116.763060
. [PMID: 28280244] - Archana Singh, Gah-Hyun Lim, Pradeep Kachroo. Transport of chemical signals in systemic acquired resistance.
Journal of integrative plant biology.
2017 May; 59(5):336-344. doi:
10.1111/jipb.12537
. [PMID: 28304135] - Laura Villanueva, Stefan Schouten, Jaap S Sinninghe Damsté. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.
Environmental microbiology.
2017 01; 19(1):54-69. doi:
10.1111/1462-2920.13361
. [PMID: 27112361] - Guanghao Wu, Yuan Yuan, Jintian He, Ying Li, Xiaojing Dai, Baohua Zhao. Stable thermosensitive in situ gel-forming systems based on the lyophilizate of chitosan/α,β-glycerophosphate salts.
International journal of pharmaceutics.
2016 Sep; 511(1):560-569. doi:
10.1016/j.ijpharm.2016.07.050
. [PMID: 27457422] - Gah-Hyun Lim, Aardra Kachroo, Pradeep Kachroo. Role of plasmodesmata and plasmodesmata localizing proteins in systemic immunity.
Plant signaling & behavior.
2016 09; 11(9):e1219829. doi:
10.1080/15592324.2016.1219829
. [PMID: 27645210] - Virginia L Gaveglio, Ana C Pascual, Norma M Giusto, Susana J Pasquaré. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.
Archives of biochemistry and biophysics.
2016 08; 604(?):121-7. doi:
10.1016/j.abb.2016.06.017
. [PMID: 27355428] - Jiancai Wang, Ronghua Xu, Ruling Wang, Mohammad Enamul Haque, Aizhong Liu. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.
Bioscience, biotechnology, and biochemistry.
2016 Jun; 80(6):1214-22. doi:
10.1080/09168451.2015.1136883
. [PMID: 26865376] - Gah-Hyun Lim, M B Shine, Laura de Lorenzo, Keshun Yu, Weier Cui, Duroy Navarre, Arthur G Hunt, Jung-Youn Lee, Aardra Kachroo, Pradeep Kachroo. Plasmodesmata Localizing Proteins Regulate Transport and Signaling during Systemic Acquired Immunity in Plants.
Cell host & microbe.
2016 Apr; 19(4):541-9. doi:
10.1016/j.chom.2016.03.006
. [PMID: 27078071] - Vijayata Singh, Praveen Kumar Singh, Adnan Siddiqui, Subaran Singh, Zeeshan Zahoor Banday, Ashis Kumar Nandi. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.
Journal of plant research.
2016 Mar; 129(2):285-293. doi:
10.1007/s10265-015-0781-0
. [PMID: 26747130] - Hannah K Wayment-Steele, Yujia Jing, Marcus J Swann, Lewis E Johnson, Björn Agnarsson, Sofia Svedhem, Malkiat S Johal, Angelika Kunze. Effects of Al(3+) on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers.
Langmuir : the ACS journal of surfaces and colloids.
2016 Feb; 32(7):1771-81. doi:
10.1021/acs.langmuir.5b03999
. [PMID: 26783873] - Sayaka Kato, Yoko Nakajima, Risa Awaya, Ikue Hata, Yosuke Shigematsu, Shinji Saitoh, Tetsuya Ito. Pitfall in the Diagnosis of Fructose-1,6-Bisphosphatase Deficiency: Difficulty in Detecting Glycerol-3-Phosphate with Solvent Extraction in Urinary GC/MS Analysis.
The Tohoku journal of experimental medicine.
2015 11; 237(3):235-9. doi:
10.1620/tjem.237.235
. [PMID: 26549536] - Mike Pollard, Danielle Delamarter, Tina M Martin, Yair Shachar-Hill. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates.
Phytochemistry.
2015 Oct; 118(?):192-203. doi:
10.1016/j.phytochem.2015.07.021
. [PMID: 26265565] - Miriam Payá-Milans, Mónica Venegas-Calerón, Joaquín J Salas, Rafael Garcés, Enrique Martínez-Force. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus.
Phytochemistry.
2015 Mar; 111(?):27-36. doi:
10.1016/j.phytochem.2014.12.028
. [PMID: 25618244] - Jiang Wei Wu, Hao Yang, Shu Pei Wang, Krishnakant G Soni, Catherine Brunel-Guitton, Grant A Mitchell. Inborn errors of cytoplasmic triglyceride metabolism.
Journal of inherited metabolic disease.
2015 Jan; 38(1):85-98. doi:
10.1007/s10545-014-9767-7
. [PMID: 25300978] - Kylie R Cowens, Stephen Simpson, W Kelley Thomas, Gale B Carey. Polybrominated Diphenyl Ether (PBDE)-Induced Suppression of Phosphoenolpyruvate Carboxykinase (PEPCK) Decreases Hepatic Glyceroneogenesis and Disrupts Hepatic Lipid Homeostasis.
Journal of toxicology and environmental health. Part A.
2015; 78(23-24):1437-49. doi:
10.1080/15287394.2015.1098580
. [PMID: 26692069] - Yufan Zhang, Philip Smith, Siela N Maximova, Mark J Guiltinan. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.
Molecular plant pathology.
2015 Jan; 16(1):27-37. doi:
10.1111/mpp.12158
. [PMID: 24863347] - Xue Chen, Robin Miles, Crystal Snyder, Martin Truksa, Jian Zhang, Saleh Shah, Randall J Weselake. Possible allostery and oligomerization of recombinant plastidial sn-glycerol-3-phosphate acyltransferase.
Archives of biochemistry and biophysics.
2014 Jul; 554(?):55-64. doi:
10.1016/j.abb.2014.05.007
. [PMID: 24841490] - Caixia Wang, Mohamed El-Shetehy, M B Shine, Keshun Yu, Duroy Navarre, David Wendehenne, Aardra Kachroo, Pradeep Kachroo. Free radicals mediate systemic acquired resistance.
Cell reports.
2014 Apr; 7(2):348-355. doi:
10.1016/j.celrep.2014.03.032
. [PMID: 24726369] - Tomasz Furmanek, Kamil Demski, Walentyna Banaś, Richard Haslam, Jonathan Napier, Sten Stymne, Antoni Banaś. The utilization of the acyl-CoA and the involvement PDAT and DGAT in the biosynthesis of erucic acid-rich triacylglycerols in Crambe seed oil.
Lipids.
2014 Apr; 49(4):327-33. doi:
10.1007/s11745-014-3886-7
. [PMID: 24578031] - Qing-Ming Gao, Aardra Kachroo, Pradeep Kachroo. Chemical inducers of systemic immunity in plants.
Journal of experimental botany.
2014 Apr; 65(7):1849-55. doi:
10.1093/jxb/eru010
. [PMID: 24591049] - Gérald Larrouy-Maumus, Geoff Kelly, Luiz Pedro Sório de Carvalho. Chemical mechanism of glycerol 3-phosphate phosphatase: pH-dependent changes in the rate-limiting step.
Biochemistry.
2014 Jan; 53(1):143-51. doi:
10.1021/bi400856y
. [PMID: 24359335] - Ai-hua Zhang, Hui Sun, Shi Qiu, Xi-jun Wang. Metabolomics in noninvasive breast cancer.
Clinica chimica acta; international journal of clinical chemistry.
2013 Sep; 424(?):3-7. doi:
10.1016/j.cca.2013.05.003
. [PMID: 23669185] - Jiangwei Yao, Charles O Rock. Phosphatidic acid synthesis in bacteria.
Biochimica et biophysica acta.
2013 Mar; 1831(3):495-502. doi:
10.1016/j.bbalip.2012.08.018
. [PMID: 22981714] - Kyung Ok Yu, Ju Jung, Ahmad Bazli Ramzi, Se Hoon Choe, Seung Wook Kim, Chulhwan Park, Sung Ok Han. Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate.
Biotechnology and bioengineering.
2013 Jan; 110(1):343-7. doi:
10.1002/bit.24623
. [PMID: 22886471] - Michele Alves-Bezerra, Katia C Gondim. Triacylglycerol biosynthesis occurs via the glycerol-3-phosphate pathway in the insect Rhodnius prolixus.
Biochimica et biophysica acta.
2012 Dec; 1821(12):1462-71. doi:
10.1016/j.bbalip.2012.08.002
. [PMID: 22902317] - Sanjeewa Gamagedara, Anthony T Kaczmarek, Yongqing Jiang, Xiaoliang Cheng, Xiaoling Cheng, Maduka Rupasinghe, Yinfa Ma. Validation study of urinary metabolites as potential biomarkers for prostate cancer detection.
Bioanalysis.
2012 Jun; 4(10):1175-83. doi:
10.4155/bio.12.92
. [PMID: 22651561] - Hao Ding, Cynthia B Yip, Barney A Geddes, Ivan J Oresnik, Michael F Hynes. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation.
Microbiology (Reading, England).
2012 May; 158(Pt 5):1369-1378. doi:
10.1099/mic.0.057281-0
. [PMID: 22343359] - Mihir K Mandal, Bidisha Chanda, Ye Xia, Keshun Yu, Ken-Taro Sekine, Qing-ming Gao, Devarshi Selote, Aardra Kachroo, Pradeep Kachroo. Glycerol-3-phosphate and systemic immunity.
Plant signaling & behavior.
2011 Nov; 6(11):1871-4. doi:
10.4161/psb.6.11.17901
. [PMID: 22067992] - Luana Lopes Souza, Aline Cordeiro, Lorraine Soares Oliveira, Gabriela Silva Monteiro de Paula, Larissa Costa Faustino, Tania Maria Ortiga-Carvalho, Karen Jesus Oliveira, Carmen Cabanelas Pazos-Moura. Thyroid hormone contributes to the hypolipidemic effect of polyunsaturated fatty acids from fish oil: in vivo evidence for cross talking mechanisms.
The Journal of endocrinology.
2011 Oct; 211(1):65-72. doi:
10.1530/joe-11-0142
. [PMID: 21752938] - Nancy J Phillips, Dawn M Adin, Eric V Stabb, Margaret J McFall-Ngai, Michael A Apicella, Bradford W Gibson. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety.
The Journal of biological chemistry.
2011 Jun; 286(24):21203-19. doi:
10.1074/jbc.m111.239475
. [PMID: 21498521] - Haruo Shimada, Akihiko Yamagishi. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids.
Biochemistry.
2011 May; 50(19):4114-20. doi:
10.1021/bi200172d
. [PMID: 21473653] - Bidisha Chanda, Ye Xia, Mihir Kumar Mandal, Keshun Yu, Ken-Taro Sekine, Qing-ming Gao, Devarshi Selote, Yanling Hu, Arnold Stromberg, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants.
Nature genetics.
2011 May; 43(5):421-7. doi:
10.1038/ng.798
. [PMID: 21441932] - Takashi Obama, Sayaka Nagaoka, Kazuki Akagi, Rina Kato, Naomi Horiuchi, Yasushi Horai, Toshihiro Aiuchi, Satoru Arata, Tomohiro Yamaguchi, Mitsuhiro Watanabe, Hiroyuki Itabe. Dietary cholesterol reduces plasma triacylglycerol in apolipoprotein E-null mice: suppression of lipin-1 and -2 in the glycerol-3-phosphate pathway.
PloS one.
2011; 6(8):e22917. doi:
10.1371/journal.pone.0022917
. [PMID: 21857965] - Heinrich Topp, Olena Hochfeld, Staffan Bark, Matthias Grossmann, Christian Joukhadar, Martin Westphal, Harald Straatsma, Markus Rothenburger. Glycerophosphate is interchangeable with inorganic phosphate in terms of safety and serum pharmacokinetics.
Pharmacology.
2011; 88(3-4):193-200. doi:
10.1159/000331341
. [PMID: 21986180] - Nicholas T Ktistakis. Lipid signaling and homeostasis: PA- is better than PA-H, but what about those PIPs?.
Science signaling.
2010 Dec; 3(151):pe46. doi:
10.1126/scisignal.3151pe46
. [PMID: 21139136] - Suma Mohan, Aswathy Sheena, Ninu Poulose, Gopalakrishnapillai Anilkumar. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition.
PloS one.
2010 Dec; 5(12):e14217. doi:
10.1371/journal.pone.0014217
. [PMID: 21151967] - Wenyun Shen, John Qiang Li, Melanie Dauk, Yi Huang, Cyril Periappuram, Yangdou Wei, Jitao Zou. Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol 3-phosphate metabolism in Arabidopsis.
The Journal of biological chemistry.
2010 Jul; 285(30):22957-65. doi:
10.1074/jbc.m109.097758
. [PMID: 20304913] - Sanhita S Dixit, Hanyoup Kim, Arseny Vasilyev, Aya Eid, Gregory W Faris. Light-driven formation and rupture of droplet bilayers.
Langmuir : the ACS journal of surfaces and colloids.
2010 May; 26(9):6193-200. doi:
10.1021/la1010067
. [PMID: 20361732] - Noemí Ruiz-López, Rafael Garcés, John L Harwood, Enrique Martínez-Force. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds.
Plant physiology and biochemistry : PPB.
2010 Feb; 48(2-3):73-80. doi:
10.1016/j.plaphy.2009.12.001
. [PMID: 20044264] - A Arana, J A Mendizabal, M Alzón, B Soret, A Purroy. The effect of vitamin A supplementation on postnatal adipose tissue development of lambs.
Journal of animal science.
2008 Dec; 86(12):3393-400. doi:
10.2527/jas.2008-0889
. [PMID: 18676724] - Bidisha Chanda, Srivathsa C Venugopal, Saurabh Kulshrestha, Duroy A Navarre, Bruce Downie, Lisa Vaillancourt, Aardra Kachroo, Pradeep Kachroo. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis.
Plant physiology.
2008 Aug; 147(4):2017-29. doi:
10.1104/pp.108.121335
. [PMID: 18567828] - Kevork Hagopian, Jon J Ramsey, Richard Weindruch. Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities.
Bioscience reports.
2008 Apr; 28(2):107-15. doi:
10.1042/bsr20080015
. [PMID: 18429748] - Helene Vigeolas, Peter Waldeck, Thorsten Zank, Peter Geigenberger. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter.
Plant biotechnology journal.
2007 May; 5(3):431-41. doi:
10.1111/j.1467-7652.2007.00252.x
. [PMID: 17430545] - Elmus G Beale, Brandy J Harvey, Claude Forest. PCK1 and PCK2 as candidate diabetes and obesity genes.
Cell biochemistry and biophysics.
2007; 48(2-3):89-95. doi:
10.1007/s12013-007-0025-6
. [PMID: 17709878] - Jian Payandeh, Masahiro Fujihashi, Wanda Gillon, Emil F Pai. The crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme.
The Journal of biological chemistry.
2006 Mar; 281(9):6070-8. doi:
10.1074/jbc.m509377200
. [PMID: 16377641] - Xianlin Han, Jingyue Yang, Hua Cheng, Kui Yang, Dana R Abendschein, Richard W Gross. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction.
Biochemistry.
2005 Dec; 44(50):16684-94. doi:
10.1021/bi051908a
. [PMID: 16342958] - Jerry L Chen, Erin Peacock, Waheeda Samady, Scott M Turner, Richard A Neese, Marc K Hellerstein, Elizabeth J Murphy. Physiologic and pharmacologic factors influencing glyceroneogenic contribution to triacylglyceride glycerol measured by mass isotopomer distribution analysis.
The Journal of biological chemistry.
2005 Jul; 280(27):25396-402. doi:
10.1074/jbc.m413948200
. [PMID: 15888453] - R Szczepanowski, S Braun, V Riedel, S Schneiker, I Krahn, A Pühler, A Schlüter. The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions.
Microbiology (Reading, England).
2005 Apr; 151(Pt 4):1095-1111. doi:
10.1099/mic.0.27773-0
. [PMID: 15817778] - B Stec, O Markman, U Rao, G Heffron, S Henderson, L P Vernon, V Brumfeld, M M Teeter. Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins.
The journal of peptide research : official journal of the American Peptide Society.
2004 Dec; 64(6):210-24. doi:
10.1111/j.1399-3011.2004.00187.x
. [PMID: 15613085] - Helene Vigeolas, Peter Geigenberger. Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta.
Planta.
2004 Sep; 219(5):827-35. doi:
10.1007/s00425-004-1273-y
. [PMID: 15107995] - Tatsuya Kishimoto, Takeshi Matsuoka, Shigeyuki Imamura, Koji Mizuno. A novel colorimetric assay for the determination of lysophosphatidic acid in plasma using an enzymatic cycling method.
Clinica chimica acta; international journal of clinical chemistry.
2003 Jul; 333(1):59-67. doi:
10.1016/s0009-8981(03)00165-7
. [PMID: 12809736] - Matthew W Hayman, Tony Fawcett, Antoni R Slabas. Kinetic mechanism and order of substrate binding for sn-glycerol-3-phosphate acyltransferase from squash (Cucurbita moschata).
FEBS letters.
2002 Mar; 514(2-3):281-4. doi:
10.1016/s0014-5793(02)02381-5
. [PMID: 11943166] - Martin Hansen, Jürgen F J Kun, Joachim E Schultz, Eric Beitz. A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites.
The Journal of biological chemistry.
2002 Feb; 277(7):4874-82. doi:
10.1074/jbc.m110683200
. [PMID: 11729204] - Eulàlia Montell, Carlos Lerín, Christopher B Newgard, Anna M Gómez-Foix. Effects of modulation of glycerol kinase expression on lipid and carbohydrate metabolism in human muscle cells.
The Journal of biological chemistry.
2002 Jan; 277(4):2682-6. doi:
10.1074/jbc.m107227200
. [PMID: 11714702] - D P Lee, A S Deonarine, M Kienetz, Q Zhu, M Skrzypczak, M Chan, P C Choy. A novel pathway for lipid biosynthesis: the direct acylation of glycerol.
Journal of lipid research.
2001 Dec; 42(12):1979-86. doi:
. [PMID: 11734570]
- R H Skelly, B Wicksteed, P A Antinozzi, C J Rhodes. Glycerol-stimulated proinsulin biosynthesis in isolated pancreatic rat islets via adenoviral-induced expression of glycerol kinase is mediated via mitochondrial metabolism.
Diabetes.
2001 Aug; 50(8):1791-8. doi:
10.2337/diabetes.50.8.1791
. [PMID: 11473040] - M Watford. Functional glycerol kinase activity and the possibility of a major role for glyceroneogenesis in mammalian skeletal muscle.
Nutrition reviews.
2000 May; 58(5):145-8. doi:
10.1111/j.1753-4887.2000.tb01849.x
. [PMID: 10860394] - Y X Fan, P McPhie, E W Miles. Regulation of tryptophan synthase by temperature, monovalent cations, and an allosteric ligand. Evidence from Arrhenius plots, absorption spectra, and primary kinetic isotope effects.
Biochemistry.
2000 Apr; 39(16):4692-703. doi:
10.1021/bi9921586
. [PMID: 10769125] - K Athenstaedt, G Daum. Phosphatidic acid, a key intermediate in lipid metabolism.
European journal of biochemistry.
1999 Nov; 266(1):1-16. doi:
10.1046/j.1432-1327.1999.00822.x
. [PMID: 10542045] - A Atlante, S Gagliardi, E Marra, P Calissano, S Passarella. Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment.
Journal of neurochemistry.
1999 Jul; 73(1):237-46. doi:
10.1046/j.1471-4159.1999.0730237.x
. [PMID: 10386976] - U C Vothknecht, D L Tumbula. Archaea: from genomics to physiology and the origin of life.
Trends in cell biology.
1999 Apr; 9(4):159-61. doi:
10.1016/s0962-8924(99)01522-6
. [PMID: 10203795] - K Athenstaedt, S Weys, F Paltauf, G Daum. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae.
Journal of bacteriology.
1999 Mar; 181(5):1458-63. doi:
10.1128/jb.181.5.1458-1463.1999
. [PMID: 10049376] - T Lietz, J Rybka, J Bryła. Fatty acids and glycerol or lactate are required to induce gluconeogenesis from alanine in isolated rabbit renal cortical tubules.
Amino acids.
1999; 16(1):41-58. doi:
10.1007/bf01318884
. [PMID: 10078333] - Frances M Jackson, Louise Michaelson, Thomas C M Fraser, A Keith Stobart, Gareth Griffiths. Biosynthesis of triacylglycerol in the filamentous fungus Mucor circinelloides.
Microbiology (Reading, England).
1998 Sep; 144 ( Pt 9)(?):2639-2645. doi:
10.1099/00221287-144-9-2639
. [PMID: 9782513] - N Minagawa, Y Yabu, K Kita, K Nagai, N Ohta, K Meguro, S Sakajo, A Yoshimoto. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei.
Molecular and biochemical parasitology.
1997 Feb; 84(2):271-80. doi:
10.1016/s0166-6851(96)02797-1
. [PMID: 9084049] - B Y Yu, T Cronholm. Coupling of ethanol metabolism to lipid biosynthesis: labelling of the glycerol moieties of sn-glycerol-3-phosphate, a phosphatidic acid and a phosphatidylcholine in liver of rats given [1,1-2H2]ethanol.
Biochimica et biophysica acta.
1997 Jan; 1344(2):165-70. doi:
10.1016/s0005-2760(96)00140-3
. [PMID: 9030193] - N Minagawa, Y Yabu, K Kita, K Nagai, N Ohta, K Meguro, S Sakajo, A Yoshimoto. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei.
Molecular and biochemical parasitology.
1996 Oct; 81(2):127-36. doi:
10.1016/0166-6851(96)02665-5
. [PMID: 8898329] - I Costello, C Powell, A F Williams. Sodium glycerophosphate in the treatment of neonatal hypophosphataemia.
Archives of disease in childhood. Fetal and neonatal edition.
1995 Jul; 73(1):F44-5. doi:
10.1136/fn.73.1.f44
. [PMID: 7552597] - Y Y Charng, J Sheng, J Preiss. Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity.
Archives of biochemistry and biophysics.
1995 Apr; 318(2):476-80. doi:
10.1006/abbi.1995.1256
. [PMID: 7733679] - A M Moir, V A Zammit. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume.
The Biochemical journal.
1995 Feb; 305 ( Pt 3)(?):953-8. doi:
10.1042/bj3050953
. [PMID: 7848296]