3-Methyl-2-oxobutanoate (BioDeep_00000897291)
代谢物信息卡片
化学式: C5H7O3- (115.0395172)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 16%
分子结构信息
SMILES: CC(C)C(=O)C(=O)[O-]
InChI: InChI=1S/C5H8O3/c1-3(2)4(6)5(7)8/h3H,1-2H3,(H,7,8)/p-1
描述信息
A 2-oxo monocarboxylic acid anion that is the conjugate base of 3-methyl-2-oxobutanoic acid, arising from deprotonation of the carboxy group.
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(0)
BioCyc(16)
- superpathway of L-phenylalanine biosynthesis
- superpathway of aromatic amino acid biosynthesis
- superpathway of L-tyrosine biosynthesis
- superpathway of chorismate metabolism
- phosphopantothenate biosynthesis I
- superpathway of coenzyme A biosynthesis I (bacteria)
- L-valine degradation I
- superpathway of alanine biosynthesis
- alanine biosynthesis I
- L-tyrosine biosynthesis I
- L-phenylalanine biosynthesis I
- L-valine biosynthesis
- pyruvate fermentation to isobutanol (engineered)
- butanol and isobutanol biosynthesis (engineered)
- L-valine degradation II
- valine degradation II
PlantCyc(0)
代谢反应
106 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(18)
- pyruvate fermentation to isobutanol (engineered):
NAD+ + isobutanol ⟶ H+ + NADH + isobutanal
- butanol and isobutanol biosynthesis (engineered):
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- L-valine degradation II:
NAD+ + isobutanol ⟶ H+ + NADH + isobutanal
- valine degradation:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glu
- L-valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- valine degradation II:
2-oxoisovalerate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
3-methyl-2-oxobutanoate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoisovalerate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- L-valine degradation II:
3-methyl-2-oxobutanoate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- L-valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- superpathway of alanine biosynthesis:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- alanine biosynthesis I:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- L-valine biosynthesis:
(2R)-2,3-dihydroxy-3-methylbutanoate ⟶ 3-methyl-2-oxobutanoate + H2O
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
- valine degradation III:
H2O + NAD+ + coenzyme A + methylmalonate semialdehyde ⟶ H+ + NADH + hydrogen carbonate + propanoyl-CoA
Plant Reactome(0)
INOH(0)
PlantCyc(87)
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of pantothenate and coenzymeA biosynthesis:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of coenzyme A biosynthesis II (plants):
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of coenzyme A biosynthesis II (plants):
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- phosphopantothenate biosynthesis I:
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Gabriella A M Ten Have, Lisa Jansen, Marieke G Schooneman, Marielle P K J Engelen, Nicolaas E P Deutz. Metabolic flux analysis of branched-chain amino and keto acids (BCAA, BCKA) and β-hydroxy β-methylbutyric acid across multiple organs in the pig.
American journal of physiology. Endocrinology and metabolism.
2021 03; 320(3):E629-E640. doi:
10.1152/ajpendo.00384.2020
. [PMID: 33522397] - Kiana Ashley West, Chidimma Kanu, Tanya Maric, Julie Anne Kathryn McDonald, Jeremy K Nicholson, Jia V Li, Mark R Johnson, Elaine Holmes, Makrina D Savvidou. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery.
Gut.
2020 08; 69(8):1452-1459. doi:
10.1136/gutjnl-2019-319620
. [PMID: 31964751] - Katsumi Shibata. Urinary Excretion of 2-Oxo Acids Is Greater in Rats with Streptozotocin-Induced Diabetes.
Journal of nutritional science and vitaminology.
2018; 64(4):292-295. doi:
10.3177/jnsv.64.292
. [PMID: 30175794] - Caroline Hall, Ian Grayson. Genotoxicity and sub-chronic toxicity of MYOLUTION® (branched chain keto acids).
Regulatory toxicology and pharmacology : RTP.
2017 Nov; 90(?):133-143. doi:
10.1016/j.yrtph.2017.09.004
. [PMID: 28888959] - Katsumi Shibata, Chifumi Nakata, Tsutomu Fukuwatari. High-performance liquid chromatographic method for profiling 2-oxo acids in urine and its application in evaluating vitamin status in rats.
Bioscience, biotechnology, and biochemistry.
2016; 80(2):304-12. doi:
10.1080/09168451.2015.1083395
. [PMID: 26745680] - Kota Fukai, Sei Harada, Miho Iida, Ayako Kurihara, Ayano Takeuchi, Kazuyo Kuwabara, Daisuke Sugiyama, Tomonori Okamura, Miki Akiyama, Yuji Nishiwaki, Yuko Oguma, Asako Suzuki, Chizuru Suzuki, Akiyoshi Hirayama, Masahiro Sugimoto, Tomoyoshi Soga, Masaru Tomita, Toru Takebayashi. Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men.
PloS one.
2016; 11(10):e0164877. doi:
10.1371/journal.pone.0164877
. [PMID: 27741291] - Dong Wan Lee, Bee Gek Ng, Beom Seok Kim. Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain α-keto acid dehydrogenase complex expression.
Journal of industrial microbiology & biotechnology.
2015 Nov; 42(11):1507-17. doi:
10.1007/s10295-015-1679-5
. [PMID: 26335568] - Xiaoya Huang, Yuan Zhong, Zhongping Huang, Chen Jin, Lili Wang, Zaifa Pan. [Simultaneous determination of five active components of compound α-ketoacid tablet in human urine by ion-pair reversed-phase high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2015 Feb; 33(2):169-73. doi:
10.3724/sp.j.1123.2014.10024
. [PMID: 25989690] - Claire L Boulangé, Sandrine P Claus, Chieh J Chou, Sebastiano Collino, Ivan Montoliu, Sunil Kochhar, Elaine Holmes, Serge Rezzi, Jeremy K Nicholson, Marc E Dumas, François-Pierre J Martin. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways.
Journal of proteome research.
2013 Apr; 12(4):1956-68. doi:
10.1021/pr400051s
. [PMID: 23473242] - André Wajner, Cristiane Bürger, Carlos Severo Dutra-Filho, Moacir Wajner, Angela Terezinha de Souza Wyse, Clóvis Milton Duval Wannmacher. Synaptic plasma membrane Na(+), K (+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex.
Metabolic brain disease.
2007 Mar; 22(1):77-88. doi:
10.1007/s11011-007-9046-5
. [PMID: 17295076] - Cláudia Funchal, Patrícia Fernanda Schuck, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Carmem Gottfried, Regina Pessoa-Pureur, Moacir Wajner. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease.
Cellular and molecular neurobiology.
2006 Feb; 26(1):67-79. doi:
10.1007/s10571-006-9098-9
. [PMID: 16633902] - Benjamin F Miller, Jens L Olesen, Mette Hansen, Simon Døssing, Regina M Crameri, Rasmus J Welling, Henning Langberg, Allan Flyvbjerg, Michael Kjaer, John A Babraj, Kenneth Smith, Michael J Rennie. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise.
The Journal of physiology.
2005 Sep; 567(Pt 3):1021-33. doi:
10.1113/jphysiol.2005.093690
. [PMID: 16002437] - Cláudia Funchal, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Ariane Zamoner, Carmem Gottfried, Moacir Wajner, Regina Pessoa-Pureur. Branched-chain alpha-keto acids accumulating in maple syrup urine disease induce reorganization of phosphorylated GFAP in C6-glioma cells.
Metabolic brain disease.
2005 Sep; 20(3):205-17. doi:
10.1007/s11011-005-7208-x
. [PMID: 16167198] - Raquel Bridi, César A Braun, Giovanni K Zorzi, Clóvis M D Wannmacher, Moacir Wajner, Eduardo G Lissi, Carlos Severo Dutra-Filho. alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats.
Metabolic brain disease.
2005 Jun; 20(2):155-67. doi:
10.1007/s11011-005-4152-8
. [PMID: 15938133] - Joachim Schuster, Stefan Binder. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
Plant molecular biology.
2005 Jan; 57(2):241-54. doi:
10.1007/s11103-004-7533-1
. [PMID: 15821880] - Cláudia Funchal, Carmem Gottfried, Lúcia Maria Vieira De Almeida, Moacir Wajner, Regina Pessoa-Pureur. Evidence that the branched-chain alpha-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex.
Glia.
2004 Nov; 48(3):230-40. doi:
10.1002/glia.20072
. [PMID: 15390119] - Cláudia Funchal, Franciele Dall Bello Pessutto, Lúcia Maria Vieira de Almeida, Priscila de Lima Pelaez, Samanta Oliveira Loureiro, Lilian Vivian, Moacir Wajner, Regina Pessoa-Pureur. Alpha-keto-beta-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system.
Journal of the neurological sciences.
2004 Jan; 217(1):17-24. doi:
10.1016/j.jns.2003.08.003
. [PMID: 14675604] - Vilson de Castro Vasques, Melissa Avila de Boer, Felipe Diligenti, Fabrício Brinco, Fabrício Mallmann, Carlos Fernando Mello, Moacir Wajner. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats.
Pharmacology, biochemistry, and behavior.
2004 Jan; 77(1):183-90. doi:
10.1016/j.pbb.2003.10.013
. [PMID: 14724056] - Angela M Sgaravatti, Rafael B Rosa, Patrícia F Schuck, César A J Ribeiro, Clóvis M D Wannmacher, Angela T S Wyse, Carlos S Dutra-Filho, Moacir Wajner. Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease.
Biochimica et biophysica acta.
2003 Nov; 1639(3):232-8. doi:
10.1016/j.bbadis.2003.09.010
. [PMID: 14636955] - P H Bisschop, M G M De Sain-Van Der Velden, F Stellaard, F Kuipers, A J Meijer, H P Sauerwein, J A Romijn. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men.
The Journal of clinical endocrinology and metabolism.
2003 Aug; 88(8):3801-5. doi:
10.1210/jc.2002-021087
. [PMID: 12915672] - R Pessoa-Pureur, C Funchal, P de Lima Pelaez, L Vivian, S Oliveira Loureiro, R de Freitas Miranda, M Wajner. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex.
Metabolic brain disease.
2002 Jun; 17(2):65-75. doi:
10.1023/a:1015459910869
. [PMID: 12083338] - A S Coitinho, C F de Mello, T T Lima, J de Bastiani, M R Fighera, M Wajner. Pharmacological evidence that alpha-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats.
Brain research.
2001 Mar; 894(1):68-73. doi:
10.1016/s0006-8993(00)03321-7
. [PMID: 11245816] - R G Tavares, C E Santos, C I Tasca, M Wajner, D O Souza, C S Dutra-Filho. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease.
Journal of the neurological sciences.
2000 Dec; 181(1-2):44-9. doi:
10.1016/s0022-510x(00)00402-0
. [PMID: 11099711] - M Reis, M Farage, H Wolosker. Chloride-dependent inhibition of vesicular glutamate uptake by alpha-keto acids accumulated in maple syrup urine disease.
Biochimica et biophysica acta.
2000 Jul; 1475(2):114-8. doi:
10.1016/s0304-4165(00)00069-6
. [PMID: 10832024] - M G de Sain-Van Der Velden, K de Meer, W Kulik, C F Melissant, T J Rabelink, R Berger, G A Kaysen. Nephrotic proteinuria has No net effect on total body protein synthesis: measurements with (13)C valine.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2000 Jun; 35(6):1149-54. doi:
10.1016/s0272-6386(00)70053-9
. [PMID: 10845830] - H Yang, F Zheng, J Jiang, P Hu, X Li. [Plasma branched-chain ketoacids metabolism in patients with chronic renal failure after oral administration of ketosteril].
Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae.
1999 Dec; 21(6):488-92. doi:
NULL
. [PMID: 12567499] - P Schadewaldt, H W Hammen, A C Ott, U Wendel. Renal clearance of branched-chain L-amino and 2-oxo acids in maple syrup urine disease.
Journal of inherited metabolic disease.
1999 Aug; 22(6):706-22. doi:
10.1023/a:1005540016376
. [PMID: 10472531] - W Kulik, C Jakobs, K de Meer. Determination of extracellular and intracellular enrichments of [1-(13)C]-alpha-ketoisovalerate using enzymatically converted [1-(13)C]-valine standardization curves and gas chromatography-mass spectrometry.
Journal of chromatography. B, Biomedical sciences and applications.
1999 Jun; 729(1-2):211-6. doi:
10.1016/s0378-4347(99)00158-9
. [PMID: 10410944] - L J Hoffer, A Taveroff, L Robitaille, M J Hamadeh, O A Mamer. Effects of leucine on whole body leucine, valine, and threonine metabolism in humans.
The American journal of physiology.
1997 Jun; 272(6 Pt 1):E1037-42. doi:
10.1152/ajpendo.1997.272.6.e1037
. [PMID: 9227449] - J L Chuang, J R Davie, J M Chinsky, R M Wynn, R P Cox, D T Chuang. Molecular and biochemical basis of intermediate maple syrup urine disease. Occurrence of homozygous G245R and F364C mutations at the E1 alpha locus of Hispanic-Mexican patients.
The Journal of clinical investigation.
1995 Mar; 95(3):954-63. doi:
10.1172/jci117804
. [PMID: 7883996] - M Wajner, J L Schlottfeldt, K Ckless, C M Wannmacher. Immunosuppressive effects of organic acids accumulating in patients with maple syrup urine disease.
Journal of inherited metabolic disease.
1995; 18(2):165-8. doi:
10.1007/bf00711757
. [PMID: 7564237] - L J Hoffer, A Taveroff, L Robitaille, O A Mamer, M L Reimer. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans.
The Journal of nutrition.
1993 Sep; 123(9):1513-21. doi:
10.1093/jn/123.9.1513
. [PMID: 8360777] - Y Matsuo, M Yagi, M Walser. Arteriovenous differences and tissue concentrations of branched-chain ketoacids.
The Journal of laboratory and clinical medicine.
1993 Jun; 121(6):779-84. doi:
NULL
. [PMID: 8505589] - G Garibotto, E Paoletti, F Fiorini, R Russo, C Robaudo, G Deferrari, A Tizianello. Peripheral metabolism of branched-chain keto acids in patients with chronic renal failure.
Mineral and electrolyte metabolism.
1993; 19(1):25-31. doi:
. [PMID: 8345831]
- K S Nair, R G Schwartz, S Welle. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans.
The American journal of physiology.
1992 Nov; 263(5 Pt 1):E928-34. doi:
10.1152/ajpendo.1992.263.5.e928
. [PMID: 1443126] - R A Harris, K M Popov, Y Shimomura, Y Zhao, J Jaskiewicz, N Nanaumi, M Suzuki. Purification, characterization, regulation and molecular cloning of mitochondrial protein kinases.
Advances in enzyme regulation.
1992; 32(?):267-84. doi:
10.1016/0065-2571(92)90022-r
. [PMID: 1496922] - P A Biondi, L Guidotti, A Negri, C Secchi. High-performance liquid chromatographic determination of D-amino acid oxidase activity.
Journal of chromatography.
1991 May; 566(2):377-82. doi:
10.1016/0378-4347(91)80254-a
. [PMID: 1682335] - J Letto, J T Brosnan, M E Brosnan. Oxidation of 2-oxoisocaproate and 2-oxoisovalerate by the perfused rat heart. Interactions with fatty acid oxidation.
Biochemistry and cell biology = Biochimie et biologie cellulaire.
1990 Jan; 68(1):260-5. doi:
10.1139/o90-036
. [PMID: 2112400] - K Schaefer, D von Herrath, C M Erley, G Asmus. Calcium ketovaline as new therapy for uremic hyperphosphatemia.
Mineral and electrolyte metabolism.
1990; 16(6):362-4. doi:
NULL
. [PMID: 2089249] - M Walser, F L Jarskog, S B Hill. Branched-chain-ketoacid metabolism in patients with chronic renal failure.
The American journal of clinical nutrition.
1989 Oct; 50(4):807-13. doi:
10.1093/ajcn/50.4.807
. [PMID: 2801585] - P Schadewaldt, K Beck, U Wendel. Analysis of maple syrup urine disease in cell culture: use of substrates.
Clinica chimica acta; international journal of clinical chemistry.
1989 Sep; 184(1):47-56. doi:
10.1016/0009-8981(89)90255-6
. [PMID: 2598467] - Y Uchijima, K Yoshida, H Saito. A further study of human seminal plasma lactate dehydrogenase-C4 (LDH-C4): kinetic properties of LDH-C4.
Hinyokika kiyo. Acta urologica Japonica.
1989 Mar; 35(3):457-63. doi:
NULL
. [PMID: 2735254] - W Radeck, K Beck, W Staib. Simple method for rapid quantification of branched-chain 2-oxo acids in physiological fluids as quinoxalinol derivatives by high-performance liquid chromatography.
Journal of chromatography.
1988 Nov; 432(?):297-301. doi:
10.1016/s0378-4347(00)80656-8
. [PMID: 3220898] - P Schauder, K Langer, L Herbertz. [Plasma level of branched-chain amino and keto acids in healthy subjects after an intravenous dose of MCT/LCT or LCT].
Beitrage zu Infusionstherapie und klinische Ernahrung.
1988; 20(?):75-87. doi:
NULL
. [PMID: 3288190] - M A Funk, K R Lowry, D H Baker. Utilization of the L- and DL-isomers of alpha-keto-beta-methylvaleric acid by rats and comparative efficacy of the keto analogs of branched-chain amino acids provided as ornithine, lysine and histidine salts.
The Journal of nutrition.
1987 Sep; 117(9):1550-5. doi:
10.1093/jn/117.9.1550
. [PMID: 3116181] - M Walser, L M Swain, V Alexander. Measurement of branched-chain ketoacids in plasma by high-performance liquid chromatography.
Analytical biochemistry.
1987 Aug; 164(2):287-91. doi:
10.1016/0003-2697(87)90494-5
. [PMID: 3674376] - P Schauder, D Zavelberg, K Langer, L Herbertz. Sex-specific differences in plasma branched-chain keto acid levels in obesity.
The American journal of clinical nutrition.
1987 Jul; 46(1):58-60. doi:
10.1093/ajcn/46.1.58
. [PMID: 3300251] - F Fiaccadori, G F Elia, H Lehndorff, P Pizzaferri, G Pedretti. [Indications for the use of keto-analogs in internal medicine].
Annali italiani di medicina interna : organo ufficiale della Societa italiana di medicina interna.
1987 Apr; 2(2):143-9. doi:
NULL
. [PMID: 3079446] - D Laouari, P P Kamoun, F Rocchiccioli, C Dodu, C Kleinknecht, M Broyer. Efficiency of substitution of 2-ketoisocaproic acid and 2-ketoisovaleric acid in the diet of normal and uremic growing rats.
The American journal of clinical nutrition.
1986 Dec; 44(6):832-46. doi:
10.1093/ajcn/44.6.832
. [PMID: 3788832] - C Demigné, C Rémésy, P Fafournoux. Respective contribution of plasma branched-chain amino acids and 2-keto acids to the hepatic metabolism of the carbon moiety of branched-chain amino acids in fed rats.
The Journal of nutrition.
1986 Nov; 116(11):2201-8. doi:
10.1093/jn/116.11.2201
. [PMID: 3794828] - S M Hutson. Branched chain alpha-keto acid oxidative decarboxylation in skeletal muscle mitochondria. Effect of isolation procedure and mitochondrial delta pH.
The Journal of biological chemistry.
1986 Apr; 261(10):4420-5. doi:
. [PMID: 3957903]
- J C Bode. [Branched-chain amino acids and their ketoanalogs: therapeutic uses in patients with chronic liver or kidney failure].
Der Internist.
1985 Jul; 26(7):388-98. doi:
NULL
. [PMID: 3897107] - J Arai, Y Hara, S Fukuda, T Takuma, N Sugino. Metabolic conversion of alpha-keto valine to valine in patients with chronic renal failure.
Clinical nephrology.
1985 May; 23(5):236-40. doi:
NULL
. [PMID: 4006332] - R H Miller, A E Harper. Metabolism of valine and 3-methyl-2-oxobutanoate by the isolated perfused rat kidney.
The Biochemical journal.
1984 Nov; 224(1):109-16. doi:
10.1042/bj2240109
. [PMID: 6508752] - A J Wagenmakers, J T Schepens, J H Veerkamp. Effect of starvation and exercise on actual and total activity of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.
The Biochemical journal.
1984 Nov; 223(3):815-21. doi:
10.1042/bj2230815
. [PMID: 6508743] - C Zapalowski, R H Miller, J L Dixon, A E Harper. Effects of perfusate leucine concentration on the metabolism of valine by the isolated rat hindquarter.
Metabolism: clinical and experimental.
1984 Oct; 33(10):922-7. doi:
10.1016/0026-0495(84)90246-4
. [PMID: 6482735] - S E Snyderman, F Goldstein, C Sansaricq, P M Norton. The relationship between the branched chain amino acids and their alpha-ketoacids in maple syrup urine disease.
Pediatric research.
1984 Sep; 18(9):851-3. doi:
10.1203/00006450-198409000-00009
. [PMID: 6483508] - P Schauder, K Schröder, L Herbertz, K Langer, U Langenbeck. Evidence for valine intolerance in patients with cirrhosis.
Hepatology (Baltimore, Md.).
1984 Jul; 4(4):667-70. doi:
10.1002/hep.1840040417
. [PMID: 6745855] - A J Wagenmakers, J T Schepens, J A Veldhuizen, J H Veerkamp. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.
The Biochemical journal.
1984 May; 220(1):273-81. doi:
10.1042/bj2200273
. [PMID: 6430280] - P Schauder, K Schroder, L Herbertz, H V Henning, U Langenbeck. Oral administration of alpha-ketoisovaleric acid or valine in humans: blood kinetics and biochemical effects.
The Journal of laboratory and clinical medicine.
1984 Apr; 103(4):597-605. doi:
. [PMID: 6366097]
- M Walser. Rationale and indications for the use of alpha-keto analogues.
JPEN. Journal of parenteral and enteral nutrition.
1984 Jan; 8(1):37-41. doi:
10.1177/014860718400800137
. [PMID: 6366288] - R N Dalton, C Chantler. The relationship between branched-chain amino acids and alpha-keto acids in blood in uremia.
Kidney international. Supplement.
1983 Dec; 16(?):S61-6. doi:
NULL
. [PMID: 6588270] - R N Dalton, C Chantler. Metabolism of orally administered branched-chain alpha-keto acids.
Kidney international. Supplement.
1983 Nov; 15(?):S11-5. doi:
. [PMID: 6368946]
- K H Bässler, A Pietrek. Enzymatic and pharmacokinetic studies on the metabolism of branched chain alpha-keto acids in the rat.
Zeitschrift fur Ernahrungswissenschaft.
1983 Jan; 22(1):14-26. doi:
10.1007/bf02020781
. [PMID: 6845770] - O Yamada, M Shin, K Sano, C Umezawa. Effect of dietary excess leucine on the levels of branched chain alpha-keto acids and ketone bodies in blood and the liver of rats.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1983; 53(2):192-8. doi:
NULL
. [PMID: 6885277] - H Tsuchiya, I Hashizume, T Tokunaga, M Tatsumi, N Takagi, T Hayashi. High-performance liquid chromatography of alpha-keto acids in human saliva.
Archives of oral biology.
1983; 28(11):989-92. doi:
10.1016/0003-9969(83)90052-3
. [PMID: 6581765] - D T Chuang, L S Ku, R P Cox. Thiamin-responsive maple-syrup-urine disease: decreased affinity of the mutant branched-chain alpha-keto acid dehydrogenase for alpha-ketoisovalerate and thiamin pyrophosphate.
Proceedings of the National Academy of Sciences of the United States of America.
1982 May; 79(10):3300-4. doi:
10.1073/pnas.79.10.3300
. [PMID: 6954481] - D T Chuang, L S Ku, R P Cox. Biochemical basis of thiamin-responsive maple syrup urine disease.
Transactions of the Association of American Physicians.
1982; 95(?):196-204. doi:
NULL
. [PMID: 7182976] - S Hauschildt, J Lüthje, K Brand. Influence of dietary nitrogen intake on mammalian branched chain alpha-keto acid dehydrogenase activity.
The Journal of nutrition.
1981 Dec; 111(12):2188-94. doi:
10.1093/jn/111.12.2188
. [PMID: 7310543] - K Brand. Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart muscle, brain and kidney of the rat.
Biochimica et biophysica acta.
1981 Sep; 677(1):126-32. doi:
10.1016/0304-4165(81)90153-7
. [PMID: 7295786] - P Schauder, D Matthaei, H V Henning, F Scheler, U Langenbeck. Blood levels of branched-chain alpha-keto acids in uremia: effect of an oral glucose tolerance test.
Klinische Wochenschrift.
1981 Aug; 59(15):845-9. doi:
10.1007/bf01721054
. [PMID: 7021997] - S M Hutson, A E Harper. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease.
The American journal of clinical nutrition.
1981 Feb; 34(2):173-83. doi:
10.1093/ajcn/34.2.173
. [PMID: 7211722] - C M Epstein, R K Chawla, A Wadsworth, D Rudman. Decarboxylation of alpha-ketoisovaleric acid after oral administration in man.
The American journal of clinical nutrition.
1980 Sep; 33(9):1968-74. doi:
10.1093/ajcn/33.9.1968
. [PMID: 6774606] - D Matthaei, P Schauder, P Kramer, K Grieben, F Scheler, A Mench-Hoinowski, U Langenbeck. Plasma keto-analogues in uraemic patients.
Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association.
1979; 16(?):719-20. doi:
NULL
. [PMID: 549020] - M G PICCARDO, L LUZIETTI, L CAPURSO. [VARIOUS ASPECTS OF KETOACIDURIA AND KETOACIDEMIA IN DIABETICS: URINARY EXCRETION AND HEMATIC LEVELS OF ALPHA-KETOISOCAPROIC ACID, ALPHA-KETOISOVALERIC ACID, PYRUVIC ACID AND ALPHA-KETOGLUTARIC ACID].
Il Policlinico. Sezione medica.
1963 Dec; 70(?):342-9. doi:
. [PMID: 14119018]
- M J ALLISON, M P BRYANT, I KATZ, M KEENEY. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
Journal of bacteriology.
1962 May; 83(?):1084-93. doi:
10.1128/jb.83.5.1084-1093.1962
. [PMID: 13860622] - . .
.
. doi:
. [PMID: 17369439]