Tyraminium (BioDeep_00000897286)
代谢物信息卡片
化学式: C8H12NO+ (138.09188419999998)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 37.5%
分子结构信息
SMILES: C1=CC(=CC=C1CC[NH3+])O
InChI: InChI=1S/C8H11NO/c9-6-5-7-1-3-8(10)4-2-7/h1-4,10H,5-6,9H2/p+1
描述信息
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics
An ammonium ion that is the conjugate acid of tyramine; major species at pH 7.3.
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents
D049990 - Membrane Transport Modulators
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
数据库引用编号
分类词条
相关代谢途径
Reactome(0)
BioCyc(7)
PlantCyc(4)
代谢反应
224 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(9)
- hydroxycinnamic acid tyramine amides biosynthesis:
(E)-4-coumaroyl-CoA + tyramine ⟶ H+ + coenzyme A + p-coumaroyltyramine
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin biosynthesis:
phe ⟶ trans-cinnamate + H+ + ammonia
- aromatic biogenic amine degradation (bacteria):
3,4-dihydroxyphenylacetaldehyde + H2O + NAD+ ⟶ 3,4-dihydroxyphenylacetate + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + UDP-α-D-glucose ⟶ H+ + UDP + salidroside
- salidroside biosynthesis:
4-tyrosol + UDP-α-D-glucose ⟶ H+ + UDP + salidroside
- aromatic biogenic amine degradation (bacteria):
(4-hydroxyphenyl)acetaldehyde + H2O + NAD+ ⟶ 4-hydroxyphenylacetate + H+ + NADH
- Amaryllidacea alkaloids biosynthesis:
4'-O-methylnorbelladine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (4aS,10bR)-noroxomaritidine + H2O + an oxidized [NADPH-hemoprotein reductase]
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(214)
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- hydroxycinnamic acid tyramine amides biosynthesis:
(E)-4-coumaroyl-CoA + tyramine ⟶ H+ + coenzyme A + p-coumaroyltyramine
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- hydroxycinnamic acid tyramine amides biosynthesis:
cinnamoyl-CoA + tyramine ⟶ H+ + cinnamoyltyramine + coenzyme A
- hydroxycinnamic acid tyramine amides biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- (S)-reticuline biosynthesis I:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyramine ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + dopamine
- (S)-reticuline biosynthesis I:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyramine ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + dopamine
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- Amaryllidacea alkaloids biosynthesis:
SAM + norbelladine ⟶ 4'-O-methylnorbelladine + H+ + SAH
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jia Wei, Jiayou Luo, Fei Yang, Xiangling Feng, Ming Zeng, Wen Dai, Xiongfeng Pan, Yue Yang, Yamei Li, Yamei Duan, Xiang Xiao, Ping Ye, Zhenzhen Yao, Yixu Liu, Zhihang Huang, Jiajia Zhang, Yan Zhong, Ningan Xu, Miyang Luo. Cultivated Enterococcus faecium B6 from children with obesity promotes nonalcoholic fatty liver disease by the bioactive metabolite tyramine.
Gut microbes.
2024 Jan; 16(1):2351620. doi:
10.1080/19490976.2024.2351620
. [PMID: 38738766] - Muniesh Muthaiyan Shanmugam, Jyotiska Chaudhuri, Durai Sellegounder, Amit Kumar Sahu, Sanjib Guha, Manish Chamoli, Brian Hodge, Neelanjan Bose, Charis Roberts, Dominique O Farrera, Gordon Lithgow, Richmond Sarpong, James J Galligan, Pankaj Kapahi. Methylglyoxal-derived hydroimidazolone, MG-H1, increases food intake by altering tyramine signaling via the GATA transcription factor ELT-3 in Caenorhabditis elegans.
eLife.
2023 09; 12(?):. doi:
10.7554/elife.82446
. [PMID: 37728328] - Peng Ding, Qianqian Wei, Ning Tian, Xiaoyue Ding, Ling Wang, Bin Wang, Oseweuba Valentine Okoro, Amin Shavandi, Lei Nie. Enzymatically crosslinked hydrogel based on tyramine modified gelatin and sialylated chitosan.
Biomedical materials (Bristol, England).
2022 11; 18(1):. doi:
10.1088/1748-605x/ac9f90
. [PMID: 36322975] - Christian Carpéné, Pénélope Viana, Jessica Fontaine, Henrik Laurell, Jean-Louis Grolleau. Multiple Direct Effects of the Dietary Protoalkaloid N-Methyltyramine in Human Adipocytes.
Nutrients.
2022 Jul; 14(15):. doi:
10.3390/nu14153118
. [PMID: 35956295] - Madysen Elbourne, Adam Cawley, Shawn Stanley, Christopher Bowen, Shanlin Fu. Intelligence benefit of the 3-methoxytyramine to tyramine ratio in equine urine.
Drug testing and analysis.
2022 May; 14(5):936-942. doi:
10.1002/dta.3264
. [PMID: 35343638] - Anurag Kashyap, Álvaro Luis Jiménez-Jiménez, Weiqi Zhang, Montserrat Capellades, Sumithra Srinivasan, Anna Laromaine, Olga Serra, Mercè Figueras, Jorge Rencoret, Ana Gutiérrez, Marc Valls, Nuria S Coll. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato.
The New phytologist.
2022 05; 234(4):1411-1429. doi:
10.1111/nph.17982
. [PMID: 35152435] - Fahad Aldosary, Sandhaya Norris, Philippe Tremblay, Jonathan S James, James C Ritchie, Pierre Blier. Differential Potency of Venlafaxine, Paroxetine, and Atomoxetine to Inhibit Serotonin and Norepinephrine Reuptake in Patients With Major Depressive Disorder.
The international journal of neuropsychopharmacology.
2022 04; 25(4):283-292. doi:
10.1093/ijnp/pyab086
. [PMID: 34958348] - Meghan Grace Appley, Megan Isabella Chambers, Rabi Ann Musah. Quantification of hordenine in a complex plant matrix by direct analysis in real time-high-resolution mass spectrometry: Application to the "plant of concern" Sceletium tortuosum.
Drug testing and analysis.
2022 Apr; 14(4):604-612. doi:
10.1002/dta.3193
. [PMID: 34750996] - Laurence Tousignant, Aracely Maribel Diaz-Garza, Bharat Bhusan Majhi, Sarah-Eve Gélinas, Aparna Singh, Isabel Desgagne-Penix. Transcriptome analysis of Leucojum aestivum and identification of genes involved in norbelladine biosynthesis.
Planta.
2022 Jan; 255(2):30. doi:
10.1007/s00425-021-03741-x
. [PMID: 34981205] - William Leonard, Pangzhen Zhang, Danyang Ying, Zhongxiang Fang. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry.
Critical reviews in food science and nutrition.
2022; 62(6):1608-1625. doi:
10.1080/10408398.2020.1845603
. [PMID: 33206548] - Hsin-Wei Kuo, Winton Cheng. Dietary administration of tyramine upregulates on immune resistance, carbohydrate metabolism, and biogenic amines in Macrobrachium rosenbergii.
Developmental and comparative immunology.
2022 01; 126(?):104236. doi:
10.1016/j.dci.2021.104236
. [PMID: 34428527] - Wenqin Chen, Zhiyang Li, Wenqian Cheng, Tao Wu, Jia Li, Xinyu Li, Lin Liu, Huijie Bai, Shijia Ding, Xinmin Li, Xiaolin Yu. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon.
Journal of nanobiotechnology.
2021 Dec; 19(1):450. doi:
10.1186/s12951-021-01210-x
. [PMID: 34952586] - Antonio Evidente, Marco Masi. Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites.
Biomolecules.
2021 11; 11(12):. doi:
10.3390/biom11121765
. [PMID: 34944409] - Silvia M Albillos, Olimpio Montero, Sara Calvo, Berta Solano-Vila, José M Trejo, Esther Cubo. Plasma acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol in Parkinson's disease and essential tremor. A case control biomarker study.
Parkinsonism & related disorders.
2021 10; 91(?):167-172. doi:
10.1016/j.parkreldis.2021.09.014
. [PMID: 34649109] - Seung-Hee Lee, Vimal Veeriah, Fred Levine. Liver fat storage is controlled by HNF4α through induction of lipophagy and is reversed by a potent HNF4α agonist.
Cell death & disease.
2021 06; 12(6):603. doi:
10.1038/s41419-021-03862-x
. [PMID: 34117215] - Toshihiro Kishikawa, Noriko Arase, Shigeyoshi Tsuji, Yuichi Maeda, Takuro Nii, Jun Hirata, Ken Suzuki, Kenichi Yamamoto, Tatsuo Masuda, Kotaro Ogawa, Shiro Ohshima, Hidenori Inohara, Atsushi Kumanogoh, Manabu Fujimoto, Yukinori Okada. Large-scale plasma-metabolome analysis identifies potential biomarkers of psoriasis and its clinical subtypes.
Journal of dermatological science.
2021 May; 102(2):78-84. doi:
10.1016/j.jdermsci.2021.03.006
. [PMID: 33836926] - Yuan-Kun Zheng, Bao-Jun Su, Ya-Qi Wang, Heng-Shan Wang, Hai-Bing Liao, Dong Liang. New Tyramine- and Aporphine-Type Alkamides with NO Release Inhibitory Activities from Piper puberulum.
Journal of natural products.
2021 04; 84(4):1316-1325. doi:
10.1021/acs.jnatprod.1c00055
. [PMID: 33822610] - Suntisak Khumngern, Ratchaneekorn Jirakunakorn, Panote Thavarungkul, Proespichaya Kanatharana, Apon Numnuam. A highly sensitive flow injection amperometric glucose biosensor using a gold nanoparticles/polytyramine/Prussian blue modified screen-printed carbon electrode.
Bioelectrochemistry (Amsterdam, Netherlands).
2021 Apr; 138(?):107718. doi:
10.1016/j.bioelechem.2020.107718
. [PMID: 33333458] - Zhao Xia, Tian-Qi Xu, Wei Xu, Hai-Xin Zhang, Qiu-Ping Liang, Guang-Xiong Zhou. Lyciyunin, a new dimer of feruloyltyramine and five bioactive tyramines from the root of Lycium yunnanense Kuang.
Natural product research.
2021 Feb; 35(3):447-454. doi:
10.1080/14786419.2019.1636375
. [PMID: 31282219] - Hanna Barchanska, Ji Tang, Xiangyu Fang, Magdalena Danek, Joanna Płonka, Marcin Sajdak. Profiling and fingerprinting strategies to assess exposure of edible plants to herbicides.
Food chemistry.
2021 Jan; 335(?):127658. doi:
10.1016/j.foodchem.2020.127658
. [PMID: 32731124] - Qiong Wang, Yubao Cui, Xufeng Wu, Junfang Wang. Riparin II potentials the effect of ephedrine on inflammation and remodelling in the airway of rats suffering from asthma by regulating transforming growth factor-β/Smad3 signalling pathway.
International immunopharmacology.
2021 Jan; 90(?):107116. doi:
10.1016/j.intimp.2020.107116
. [PMID: 33218943] - Monika Sobiech, Joanna Giebułtowicz, Piotr Luliński. Application of Magnetic Core-Shell Imprinted Nanoconjugates for the Analysis of Hordenine in Human Plasma-Preliminary Data on Pharmacokinetic Study after Oral Administration.
Journal of agricultural and food chemistry.
2020 Dec; 68(49):14502-14512. doi:
10.1021/acs.jafc.0c05985
. [PMID: 33227193] - Abisola Grace Ayanlowo, Zsófia Garádi, Imre Boldizsár, András Darcsi, Andrea Nagyné Nedves, Bence Varjas, Alexandra Simon, Ágnes Alberti, Eszter Riethmüller. UHPLC-DPPH method reveals antioxidant tyramine and octopamine derivatives in Celtis occidentalis.
Journal of pharmaceutical and biomedical analysis.
2020 Nov; 191(?):113612. doi:
10.1016/j.jpba.2020.113612
. [PMID: 32980795] - Yasunori Nio, Mitsugi Ookawara, Midori Yamasaki, Guido Hanauer, Kimio Tohyama, Sachio Shibata, Tomoya Sano, Fumi Shimizu, Hisashi Anayama, Masatoshi Hazama, Takanori Matsuo. Ameliorative effect of phosphodiesterase 4 and 5 inhibitors in deoxycorticosterone acetate-salt hypertensive uni-nephrectomized KKAy mice.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2020 11; 34(11):14997-15014. doi:
10.1096/fj.202001084r
. [PMID: 32939821] - Mutita Junking, Thidarath Rattanaburee, Aussara Panya, Irina Budunova, Guy Haegeman, Pa-Thai Yenchitsomanus. Anti-Proliferative Effects of Compound A and Its Effect in Combination with Cisplatin in Cholangiocarcinoma Cells.
Asian Pacific journal of cancer prevention : APJCP.
2020 09; 21(9):2673-2681. doi:
10.31557/apjcp.2020.21.9.2673
. [PMID: 32986368] - Scarlett Puebla-Barragan, Justin Renaud, Mark Sumarah, Gregor Reid. Malodorous biogenic amines in Escherichia coli-caused urinary tract infections in women-a metabolomics approach.
Scientific reports.
2020 06; 10(1):9703. doi:
10.1038/s41598-020-66662-x
. [PMID: 32546787] - Sócrates Golzio Dos Santos, Isis Fernandes Gomes, Adriana Maria Fernandes de Oliveira Golzio, Augusto Lopes Souto, Marcus Tullius Scotti, Josean Fechine Tavares, Stanley Juan Chavez Gutierrez, Reinaldo Nóbrega de Almeida, José Maria Barbosa-Filho, Marcelo Sobral da Silva. Psychopharmacological effects of riparin III from Aniba riparia (Nees) Mez. (Lauraceae) supported by metabolic approach and multivariate data analysis.
BMC complementary medicine and therapies.
2020 May; 20(1):149. doi:
10.1186/s12906-020-02938-z
. [PMID: 32416725] - Gang Xu, Xue-Fei Chang, Gui-Xiang Gu, Wen-Xi Jia, Lei Guo, Jia Huang, Gong-Yin Ye. Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps.
Insect biochemistry and molecular biology.
2020 05; 120(?):103337. doi:
10.1016/j.ibmb.2020.103337
. [PMID: 32109588] - Danusio Pinheiro Sartori, N F Oliveira, José Tiago Valentim, D M A Silva, A S V Mallman, I C M Oliveira, R C Chaves, V C Capibaribe, A M R Carvalho, M O Rebouças, Danielle Silveira Macedo, Adriano José Maia Chaves Filho, M M F Fonteles, S J C Gutierrez, José Maria Barbosa-Filho, Melina Mottin, Carolina Horta Andrade, F C F Sousa. Involvement of monoaminergic targets in the antidepressant- and anxiolytic-like effects of the synthetic alkamide riparin IV: Elucidation of further mechanisms through pharmacological, neurochemistry and computational approaches.
Behavioural brain research.
2020 04; 383(?):112487. doi:
10.1016/j.bbr.2020.112487
. [PMID: 31987932] - Wanwan Wang, Zhuoxian Yu, Jinpeng Meng, Pengyong Zhou, Ting Luo, Jin Zhang, Jun Wu, Yonggen Lou. Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera.
Scientific reports.
2020 04; 10(1):5778. doi:
10.1038/s41598-020-62752-y
. [PMID: 32238850] - Chin-Chyuan Chang, Hsin-Wei Kuo, Chang-Chi Liu, Winton Cheng. The temporary modulation of tyramine on immune responses, carbohydrate metabolism, and catecholamines in Macrobrachium rosenbergii.
Fish & shellfish immunology.
2020 Mar; 98(?):1-9. doi:
10.1016/j.fsi.2019.12.091
. [PMID: 31904540] - Zheming Ying, Mingyue Jiang, Lina Wang, Xixiang Ying, Guanlin Yang. Bioactivities of 7'‑ethoxy‑trans‑feruloyltyramine from Portulaca oleracea L. and its metabolism in rats using ultra‑high‑performance liquid chromatography electrospray coupled with quadrupole time‑of‑flight mass spectrometry.
Indian journal of pharmacology.
2020 Mar; 52(2):130-133. doi:
10.4103/ijp.ijp_171_18
. [PMID: 32565600] - Monika Sobiech, Joanna Giebułtowicz, Piotr Luliński. Theoretical and experimental proof for selective response of imprinted sorbent - analysis of hordenine in human urine.
Journal of chromatography. A.
2020 Feb; 1613(?):460677. doi:
10.1016/j.chroma.2019.460677
. [PMID: 31727352] - Thomas Sommer, Thomas Göen, Nadja Budnik, Monika Pischetsrieder. Absorption, Biokinetics, and Metabolism of the Dopamine D2 Receptor Agonist Hordenine (N,N-Dimethyltyramine) after Beer Consumption in Humans.
Journal of agricultural and food chemistry.
2020 Feb; 68(7):1998-2006. doi:
10.1021/acs.jafc.9b06029
. [PMID: 31984737] - Ajay Patel, Austin Thompson, Lillian Abdelmalek, Beverley Adams-Huet, Ishwarlal Jialal. The relationship between tyramine levels and inflammation in metabolic syndrome.
Hormone molecular biology and clinical investigation.
2019 Nov; 40(1):. doi:
10.1515/hmbci-2019-0047
. [PMID: 31693494] - Ravid Doron, Ziv Versano, Or Burstein, Motty Franko, Alon Shamir, Roni Toledano, Assaf Handelsman, Moshe Rehavi. Cerebral MAO Activity Is Not Altered by a Novel Herbal Antidepressant Treatment.
Journal of molecular neuroscience : MN.
2019 Nov; 69(3):371-379. doi:
10.1007/s12031-019-01366-0
. [PMID: 31290092] - Guangxin Sun, Michael Strebl, Maximilian Merz, Robert Blamberg, Fong-Chin Huang, Kate McGraphery, Thomas Hoffmann, Wilfried Schwab. Glucosylation of the phytoalexin N-feruloyl tyramine modulates the levels of pathogen-responsive metabolites in Nicotiana benthamiana.
The Plant journal : for cell and molecular biology.
2019 10; 100(1):20-37. doi:
10.1111/tpj.14420
. [PMID: 31124249] - Mélanie Leroux, Tristan Lemery, Nathalie Boulet, Anaïs Briot, Alexia Zakaroff, Anne Bouloumié, Fernando Andrade, Patricia Pérez-Matute, Jose M Arbones-Mainar, Christian Carpéné. Effects of the amino acid derivatives, β-hydroxy-β-methylbutyrate, taurine, and N-methyltyramine, on triacylglycerol breakdown in fat cells.
Journal of physiology and biochemistry.
2019 Aug; 75(3):263-273. doi:
10.1007/s13105-019-00677-5
. [PMID: 30919256] - Andy Hsien Wei Koh, Russ Chess-Williams, Anna Elizabeth Lohning. Differential mechanisms of action of the trace amines octopamine, synephrine and tyramine on the porcine coronary and mesenteric artery.
Scientific reports.
2019 07; 9(1):10925. doi:
10.1038/s41598-019-46627-5
. [PMID: 31358768] - Hsin-Wei Kuo, Chin-Chyuan Chang, Winton Cheng. Tyramine's modulation of immune resistance functions in Litopenaeus vannamei and its signal pathway.
Developmental and comparative immunology.
2019 06; 95(?):68-76. doi:
10.1016/j.dci.2019.01.008
. [PMID: 30682447] - Brenda de Nazaré do Carmo Brito, Renan Campos Chisté, Alessandra Santos Lopes, Maria Beatriz Abreu Glória, Rosinelson da Silva Pena. Influence of spontaneous fermentation of manipueira on bioactive amine and carotenoid profiles during tucupi production.
Food research international (Ottawa, Ont.).
2019 06; 120(?):209-216. doi:
10.1016/j.foodres.2019.02.040
. [PMID: 31000232] - Jianan Ni, Yingying Guo, Nianwei Chang, Dandan Cheng, Menglin Yan, Min Jiang, Gang Bai. Effect of N-methyltyramine on the regulation of adrenergic receptors via enzymatic epinephrine synthesis for the treatment of gastrointestinal disorders.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2019 Mar; 111(?):1393-1398. doi:
10.1016/j.biopha.2018.12.145
. [PMID: 30841454] - Pei Liu, Chao Li, Ruixuan Zhang, Qing Tang, Jia Wei, Yan Lu, Pingping Shen. An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy.
Biosensors & bioelectronics.
2019 Feb; 126(?):543-550. doi:
10.1016/j.bios.2018.10.048
. [PMID: 30481668] - Diwas Pradhan, Rajbir Singh, Ashish Tyagi, Rashmi H M, V K Batish, Sunita Grover. Assessing safety of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 using in vitro approaches and an in vivo murine model.
Regulatory toxicology and pharmacology : RTP.
2019 Feb; 101(?):1-11. doi:
10.1016/j.yrtph.2018.10.011
. [PMID: 30367905] - Jin-Wei Zhou, Ling-Yu Ruan, Hong-Juan Chen, Huai-Zhi Luo, Huan Jiang, Jun-Song Wang, Ai-Qun Jia. Inhibition of Quorum Sensing and Virulence in Serratia marcescens by Hordenine.
Journal of agricultural and food chemistry.
2019 Jan; 67(3):784-795. doi:
10.1021/acs.jafc.8b05922
. [PMID: 30609368] - Marian Kalocsay. APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative Proteomics.
Methods in molecular biology (Clifton, N.J.).
2019; 2008(?):41-55. doi:
10.1007/978-1-4939-9537-0_4
. [PMID: 31124087] - Delphine Giusti, Estela Bini, Christine Terryn, Kevin Didier, Sébastien Le Jan, Grégory Gatouillat, Anne Durlach, Stéphane Nesmond, Celine Muller, Philippe Bernard, Frank Antonicelli, Bach Nga Pham. NET Formation in Bullous Pemphigoid Patients With Relapse Is Modulated by IL-17 and IL-23 Interplay.
Frontiers in immunology.
2019; 10(?):701. doi:
10.3389/fimmu.2019.00701
. [PMID: 31019514] - Aparna Singh, Marie-Ange Massicotte, Ariane Garand, Laurence Tousignant, Vincent Ouellette, Gervais Bérubé, Isabel Desgagné-Penix. Cloning and characterization of norbelladine synthase catalyzing the first committed reaction in Amaryllidaceae alkaloid biosynthesis.
BMC plant biology.
2018 Dec; 18(1):338. doi:
10.1186/s12870-018-1570-4
. [PMID: 30526483] - Iardja Stéfane Lopes, Iris Cristina Maia Oliveira, Victor Celso Cavalcanti Capibaribe, José Tiago Valentim, Daniel Moreira Alves da Silva, Alana Gomes de Souza, Mariana Albuquerque de Araújo, Raquell de Castro Chaves, Stanley Juan Chaves Gutierrez, José Maria Barbosa Filho, Danielle Silveira Macêdo, Francisca Cléa Florenço de Sousa. Riparin II ameliorates corticosterone-induced depressive-like behavior in mice: Role of antioxidant and neurotrophic mechanisms.
Neurochemistry international.
2018 11; 120(?):33-42. doi:
10.1016/j.neuint.2018.07.007
. [PMID: 30041016] - Jin-Wei Zhou, Bo Hou, Gen-Yan Liu, Huan Jiang, Bing Sun, Zhen-Nan Wang, Ruo-Fu Shi, Yuan Xu, Rong Wang, Ai-Qun Jia. Attenuation of Pseudomonas aeruginosa biofilm by hordenine: a combinatorial study with aminoglycoside antibiotics.
Applied microbiology and biotechnology.
2018 Nov; 102(22):9745-9758. doi:
10.1007/s00253-018-9315-8
. [PMID: 30128579] - Yehyang Kim, Sohun Lee, Ji Hye Ryu, Kee Dong Yoon, Song Seok Shin. Effect of Aurea Helianthus stem extract on anti-melanogenesis.
Bioscience, biotechnology, and biochemistry.
2018 Nov; 82(11):1871-1879. doi:
10.1080/09168451.2018.1506311
. [PMID: 30146944] - Christian Carpéné, Jean Galitzky, Chloé Belles, Alexia Zakaroff-Girard. Mechanisms of the antilipolytic response of human adipocytes to tyramine, a trace amine present in food.
Journal of physiology and biochemistry.
2018 Nov; 74(4):623-633. doi:
10.1007/s13105-018-0643-z
. [PMID: 30039351] - Ryan J Shirey, Daniel Globisch, Lisa M Eubanks, Mark S Hixon, Kim D Janda. Noninvasive Urine Biomarker Lateral Flow Immunoassay for Monitoring Active Onchocerciasis.
ACS infectious diseases.
2018 10; 4(10):1423-1431. doi:
10.1021/acsinfecdis.8b00163
. [PMID: 30141624] - Yue Yang, Hekang Zhu, Ji Wang, Qian Fang, Zhiping Peng. Enzymatically Disulfide-Crosslinked Chitosan/Hyaluronic Acid Layer-by-Layer Self-Assembled Microcapsules for Redox-Responsive Controlled Release of Protein.
ACS applied materials & interfaces.
2018 Oct; 10(39):33493-33506. doi:
10.1021/acsami.8b07120
. [PMID: 30203959] - Shuhao Su, Meng Cao, Guangyuan Wu, Zi Long, Xiaodong Cheng, Junshu Fan, Zhongrui Xu, Hongfei Su, Yiming Hao, Ge Li, Jie Peng, Shuang Li, Xin Wang. Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Aug; 104(?):315-324. doi:
10.1016/j.biopha.2018.05.036
. [PMID: 29775900] - Wongvarit Panidthananon, Tanawat Chaowasku, Boonchoo Sritularak, Kittisak Likhitwitayawuid. A New Benzophenone C-Glucoside and Other Constituents of Pseuduvaria fragrans and Their α-Glucosidase Inhibitory Activity.
Molecules (Basel, Switzerland).
2018 Jul; 23(7):. doi:
10.3390/molecules23071600
. [PMID: 30004411] - Simon Lebecque, Jean-Marc Crowet, Laurence Lins, Benjamin M Delory, Patrick du Jardin, Marie-Laure Fauconnier, Magali Deleu. Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane.
Scientific reports.
2018 06; 8(1):9784. doi:
10.1038/s41598-018-28040-6
. [PMID: 29955111] - M Z H Khan, Xiaoqiang Liu, J Zhu, F Ma, W Hu, Xiuhua Liu. Electrochemical detection of tyramine with ITO/APTES/ErGO electrode and its application in real sample analysis.
Biosensors & bioelectronics.
2018 Jun; 108(?):76-81. doi:
10.1016/j.bios.2018.02.042
. [PMID: 29501050] - Wenhan Yang, Ting Peng, Tingge Li, Juren Cen, Jian Wang. Tyramine and tyrosine decarboxylase gene contributes to the formation of cyanic blotches in the petals of pansy (Viola × wittrockiana).
Plant physiology and biochemistry : PPB.
2018 Jun; 127(?):269-275. doi:
10.1016/j.plaphy.2018.03.024
. [PMID: 29631211] - Hao-Chuan Zheng, Yan Lu, Dao-Feng Chen. Anticomplement compounds from Polygonum chinense.
Bioorganic & medicinal chemistry letters.
2018 05; 28(9):1495-1500. doi:
10.1016/j.bmcl.2018.03.079
. [PMID: 29631958] - Jin-Wei Zhou, Huai-Zhi Luo, Huan Jiang, Ting-Kun Jian, Zi-Qian Chen, Ai-Qun Jia. Hordenine: A Novel Quorum Sensing Inhibitor and Antibiofilm Agent against Pseudomonas aeruginosa.
Journal of agricultural and food chemistry.
2018 Feb; 66(7):1620-1628. doi:
10.1021/acs.jafc.7b05035
. [PMID: 29353476] - Shin-Ichi Akanuma, Yuhei Yamazaki, Yoshiyuki Kubo, Ken-Ichi Hosoya. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain.
Fluids and barriers of the CNS.
2018 Jan; 15(1):1. doi:
10.1186/s12987-017-0087-9
. [PMID: 29307307] - Zhi-Tian Peng, Ling-Hui Chao, Hui-Xia Huo, Xiao-Nan Chen, Hui-Na Yao, Yuan Zhang, Yun-Fang Zhao, Peng-Fei Tu, Jiao Zheng, Jun Li. [Phenylpropanoid amides from whole plants of Corydalis edulis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2018 Jan; 43(1):109-113. doi:
10.19540/j.cnki.cjcmm.20171027.007
. [PMID: 29552819] - Giuseppe Mannino, Gholamreza Abdi, Massimo Emilio Maffei, Francesca Barbero. Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour.
PloS one.
2018; 13(12):e0209047. doi:
10.1371/journal.pone.0209047
. [PMID: 30586439] - Viacheslav Mylka, Julie Deckers, Dariusz Ratman, Lode De Cauwer, Jonathan Thommis, Riet De Rycke, Francis Impens, Claude Libert, Jan Tavernier, Wim Vanden Berghe, Kris Gevaert, Karolien De Bosscher. The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages.
Autophagy.
2018; 14(12):2049-2064. doi:
10.1080/15548627.2018.1495681
. [PMID: 30215534] - Johannes Knuesting, Marie Clara Brinkmann, Brenner Silva, Michael Schorsch, Jörg Bendix, Erwin Beck, Renate Scheibe. Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes.
PloS one.
2018; 13(8):e0202255. doi:
10.1371/journal.pone.0202255
. [PMID: 30102718] - Annalisa Lopatriello, Rosario Previtera, Simona Pace, Markus Werner, Luigi Rubino, Oliver Werz, Orazio Taglialatela-Scafati, Martino Forino. NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum.
Phytochemistry.
2017 Dec; 144(?):52-57. doi:
10.1016/j.phytochem.2017.08.016
. [PMID: 28888145] - Andrea Lauková, Anna Kandričáková, Leona Buňková, Pavel Pleva, Jana Ščerbová. Sensitivity to Enterocins of Biogenic Amine-Producing Faecal Enterococci from Ostriches and Pheasants.
Probiotics and antimicrobial proteins.
2017 12; 9(4):483-491. doi:
10.1007/s12602-017-9272-z
. [PMID: 28342109] - Gang Wu, Manjula Nagala, Paul R Crocker. Identification of lectin counter-receptors on cell membranes by proximity labeling.
Glycobiology.
2017 09; 27(9):800-805. doi:
10.1093/glycob/cwx063
. [PMID: 28810661] - Opeyemi J Olatunji, Hongxia Chen, Yifeng Zhou. Neuroprotective effect of trans-N-caffeoyltyramine from Lycium chinense against H2O2 induced cytotoxicity in PC12 cells by attenuating oxidative stress.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Sep; 93(?):895-902. doi:
10.1016/j.biopha.2017.07.013
. [PMID: 28715870] - Rim Ghabriche, Tahar Ghnaya, Mejda Mnasri, Hanen Zaier, Raoudha Baioui, Delphine Vromman, Chedly Abdelly, Stanley Lutts. Polyamine and tyramine involvement in NaCl-induced improvement of Cd resistance in the halophyte Inula chrithmoides L.
Journal of plant physiology.
2017 Sep; 216(?):136-144. doi:
10.1016/j.jplph.2017.05.018
. [PMID: 28641150] - Gerwin Louis Tapan Dela Torre, Kerstin Mariae Gonzales Ponsaran, Angelica Louise Dela Peña de Guzman, Richelle Ann Mallapre Manalo, Erna Custodio Arollado. Safety, Efficacy, and Physicochemical Characterization of Tinospora crispa Ointment: A Community-Based Formulation against Pediculus humanus capitis.
The Korean journal of parasitology.
2017 Aug; 55(4):409-416. doi:
10.3347/kjp.2017.55.4.409
. [PMID: 28877572] - Ioannis Kampatsikas, Aleksandar Bijelic, Matthias Pretzler, Annette Rompel. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.
Acta crystallographica. Section F, Structural biology communications.
2017 Aug; 73(Pt 8):491-499. doi:
10.1107/s2053230x17010822
. [PMID: 28777094] - Shun-Fan Wu, Xiao-Min Jv, Jian Li, Guang-Jian Xu, Xiao-Yi Cai, Cong-Fen Gao. Pharmacological characterisation and functional roles for egg-laying of a β-adrenergic-like octopamine receptor in the brown planthopper Nilaparvata lugens.
Insect biochemistry and molecular biology.
2017 08; 87(?):55-64. doi:
10.1016/j.ibmb.2017.06.008
. [PMID: 28629966] - Daniel Globisch, Lisa M Eubanks, Ryan J Shirey, Kenneth M Pfarr, Samuel Wanji, Alexander Y Debrah, Achim Hoerauf, Kim D Janda. Validation of onchocerciasis biomarker N-acetyltyramine-O-glucuronide (NATOG).
Bioorganic & medicinal chemistry letters.
2017 08; 27(15):3436-3440. doi:
10.1016/j.bmcl.2017.05.082
. [PMID: 28600214] - Xinyao Lu, Yuliya Hrynets, Mirko Betti. Transglutaminase-catalyzed amination of pea protein peptides using the biogenic amines histamine and tyramine.
Journal of the science of food and agriculture.
2017 Jun; 97(8):2436-2442. doi:
10.1002/jsfa.8057
. [PMID: 27696428] - Atsushi Ishihara, Rie Kumeda, Noriko Hayashi, Yukari Yagi, Nanase Sakaguchi, Yu Kokubo, Naoki Ube, Shin-Ichi Tebayashi, Kotomi Ueno. Induced accumulation of tyramine, serotonin, and related amines in response to Bipolaris sorokiniana infection in barley.
Bioscience, biotechnology, and biochemistry.
2017 Jun; 81(6):1090-1098. doi:
10.1080/09168451.2017.1290520
. [PMID: 28485206] - Marta Novo, Cristina Silvar, Fuencisla Merino, Teresa Martínez-Cortés, Fachuang Lu, John Ralph, Federico Pomar. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb.
Plant science : an international journal of experimental plant biology.
2017 May; 258(?):12-20. doi:
10.1016/j.plantsci.2017.01.014
. [PMID: 28330555] - Milos Prokopijevic, Olivera Prodanovic, Dragica Spasojevic, Gordana Kovacevic, Natalija Polovic, Ksenija Radotic, Radivoje Prodanovic. Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization.
Applied microbiology and biotechnology.
2017 Mar; 101(6):2281-2290. doi:
10.1007/s00253-016-8002-x
. [PMID: 27942755] - Nianwei Chang, Yanmei Li, Mengge Zhou, Jie Gao, Yuanyuan Hou, Min Jiang, Gang Bai. The hemostatic effect study of Cirsium setosum on regulating α1-ARs via mediating norepinephrine synthesis by enzyme catalysis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Mar; 87(?):698-704. doi:
10.1016/j.biopha.2017.01.022
. [PMID: 28088737] - Giovanni D'Andrea, Massimo Leone, Gennaro Bussone, Paola Di Fiore, Andrea Bolner, Marco Aguggia, Maria Gabriella Saracco, Francesco Perini, Giuseppe Giordano, Antonina Gucciardi, Alberta Leon. Abnormal tyrosine metabolism in chronic cluster headache.
Cephalalgia : an international journal of headache.
2017 Feb; 37(2):148-153. doi:
10.1177/0333102416640502
. [PMID: 27009563] - Luigi Servillo, Domenico Castaldo, Alfonso Giovane, Rosario Casale, Nunzia D'Onofrio, Domenico Cautela, Maria Luisa Balestrieri. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives.
Journal of agricultural and food chemistry.
2017 Feb; 65(4):892-899. doi:
10.1021/acs.jafc.6b04423
. [PMID: 28117581] - Siyu Wang, Joon Hyuk Suh, Xi Zheng, Yu Wang, Chi-Tang Ho. Identification and Quantification of Potential Anti-inflammatory Hydroxycinnamic Acid Amides from Wolfberry.
Journal of agricultural and food chemistry.
2017 Jan; 65(2):364-372. doi:
10.1021/acs.jafc.6b05136
. [PMID: 28008757] - Árpád Könczöl, Kata Rendes, Miklós Dékány, Judit Müller, Eszter Riethmüller, György Tibor Balogh. Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba.
Journal of pharmaceutical and biomedical analysis.
2016 Nov; 131(?):167-174. doi:
10.1016/j.jpba.2016.08.032
. [PMID: 27592255] - Mark D Berry, Shannon Hart, Anthony R Pryor, Samantha Hunter, Danielle Gardiner. Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes.
Scientific reports.
2016 11; 6(?):38006. doi:
10.1038/srep38006
. [PMID: 27901065] - Andres E Barcala Tabarrozzi, Luz Andreone, Julie Deckers, Carla N Castro, María L Gimeno, Laura Ariolfo, Paula M Berguer, María Antunica-Noguerol, Ana C Liberman, Sabine Vettorazzi, Jan P Tuckermann, Karolien De Bosscher, Marcelo J Perone. GR-independent down-modulation on GM-CSF bone marrow-derived dendritic cells by the selective glucocorticoid receptor modulator Compound A.
Scientific reports.
2016 11; 6(?):36646. doi:
10.1038/srep36646
. [PMID: 27857212] - Veronica Gatto, Giulia Tabanelli, Chiara Montanari, Valentina Prodomi, Eleonora Bargossi, Sandra Torriani, Fausto Gardini. Tyrosine decarboxylase activity of Enterococcus mundtii: new insights into phenotypic and genetic aspects.
Microbial biotechnology.
2016 11; 9(6):801-813. doi:
10.1111/1751-7915.12402
. [PMID: 27624853] - Lalit Kumar Lal Das, Mradul Verma, Mahendra Sahai. Three new acyltyramines from Anisodus luridus Link et Otto (Solanaceae).
Natural product research.
2016 Nov; 30(21):2434-41. doi:
10.1080/14786419.2016.1198346
. [PMID: 27406583] - Liqiang Gu, Pengyi Hou, Ruowen Zhang, Ziying Liu, Kaishun Bi, Xiaohui Chen. An analytical strategy to investigate Semen Strychni nephrotoxicity based on simultaneous HILIC-ESI-MS/MS detection of Semen Strychni alkaloids, tyrosine and tyramine in HEK 293t cell lysates.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Oct; 1033-1034(?):157-165. doi:
10.1016/j.jchromb.2016.08.021
. [PMID: 27561182] - Lu Zhang, Zong-Cai Tu, Tao Yuan, Hui Wang, Xing Xie, Zhi-Feng Fu. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships.
Food chemistry.
2016 Oct; 208(?):61-7. doi:
10.1016/j.foodchem.2016.03.079
. [PMID: 27132824] - Xing-Hua Yue, Jia-Qing Tong, Zhao-Jun Wang, Jun Zhang, Xu Liu, Xiao-Jie Liu, Hong-Yan Cai, Jin-Shun Qi. Steroid sulfatase inhibitor DU-14 protects spatial memory and synaptic plasticity from disruption by amyloid β protein in male rats.
Hormones and behavior.
2016 07; 83(?):83-92. doi:
10.1016/j.yhbeh.2016.05.019
. [PMID: 27222435] - C Sempruch, S Goławska, P Osiński, B Leszczyński, P Czerniewicz, H Sytykiewicz, H Matok. Influence of selected plant amines on probing behaviour of bird cherry-oat aphid (Rhopalosiphum padi L.).
Bulletin of entomological research.
2016 Jun; 106(3):368-77. doi:
10.1017/s0007485316000055
. [PMID: 26898153] - Xiaoli Ma, Jin Yan, Kailin Xu, Luiqi Guo, Hui Li. Binding mechanism of trans-N-caffeoyltyramine and human serum albumin: Investigation by multi-spectroscopy and docking simulation.
Bioorganic chemistry.
2016 06; 66(?):102-10. doi:
10.1016/j.bioorg.2016.04.002
. [PMID: 27131098] - Ole Lagatie, Emmanuel Njumbe Ediage, Linda Batsa Debrah, Luc Diels, Christ Nolten, Petra Vinken, Alex Debrah, Lieve Dillen, Steven Silber, Lieven J Stuyver. Evaluation of the diagnostic potential of urinary N-Acetyltyramine-O,β-glucuronide (NATOG) as diagnostic biomarker for Onchocerca volvulus infection.
Parasites & vectors.
2016 05; 9(1):302. doi:
10.1186/s13071-016-1582-6
. [PMID: 27216752] - Jose Rodríguez-Morató, Anna Boronat, Aristotelis Kotronoulas, Mitona Pujadas, Antoni Pastor, Eulalia Olesti, Clara Pérez-Mañá, Olha Khymenets, Montserrat Fitó, Magí Farré, Rafael de la Torre. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol.
Drug metabolism reviews.
2016 05; 48(2):218-36. doi:
10.1080/03602532.2016.1179754
. [PMID: 27186796] - Xuxia Zhou, Mengting Qiu, Dandan Zhao, Fei Lu, Yuting Ding. Inhibitory Effects of Spices on Biogenic Amine Accumulation during Fish Sauce Fermentation.
Journal of food science.
2016 Apr; 81(4):M913-20. doi:
10.1111/1750-3841.13255
. [PMID: 26953496] - Andrea Bleckmann, Thomas Dresselhaus. Fluorescent whole-mount RNA in situ hybridization (F-WISH) in plant germ cells and the fertilized ovule.
Methods (San Diego, Calif.).
2016 Apr; 98(?):66-73. doi:
10.1016/j.ymeth.2015.10.019
. [PMID: 26521978] - Patrice Brassard, Morten Zaar, Pia Thaning, Niels H Secher, Jaya B Rosenmeier. Sympathetic Vasoconstrictor Responsiveness of the Leg Vasculature During Experimental Endotoxemia and Hypoxia in Humans.
Critical care medicine.
2016 Apr; 44(4):755-63. doi:
10.1097/ccm.0000000000001486
. [PMID: 26588830] - Linda D Simmler, Danièle Buchy, Sylvie Chaboz, Marius C Hoener, Matthias E Liechti. In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1.
The Journal of pharmacology and experimental therapeutics.
2016 Apr; 357(1):134-44. doi:
10.1124/jpet.115.229765
. [PMID: 26791601]