nicotinate (BioDeep_00000897277)
代谢物信息卡片
化学式: C6H4NO2- (122.0242024)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 7.14%
分子结构信息
SMILES: C1=CC(=CN=C1)C(=O)[O-]
InChI: InChI=1S/C6H5NO2/c8-6(9)5-2-1-3-7-4-5/h1-4H,(H,8,9)/p-1
描述信息
A pyridinemonocarboxylate that is the conjugate base of nicotinic acid, arising from deprotonation of the carboxy group; major species at pH 7.3.
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
D018977 - Micronutrients > D014815 - Vitamins
D009676 - Noxae > D000963 - Antimetabolites
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(5)
BioCyc(4)
PlantCyc(0)
代谢反应
240 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(100)
- 4-methylphenyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
4-methylphenol + NaMN ⟶ 4-methylphenyl ribotide phosphate + H+ + nicotinate
- 5-hydroxybenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
5-hydroxybenzimidazole + NaMN ⟶ 5-hydroxybenzimidazole ribotide phosphate + H+ + nicotinate
- 5-hydroxybenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
5-hydroxybenzimidazole + NaMN ⟶ 5-hydroxybenzimidazole ribotide phosphate + H+ + nicotinate
- 5-hydroxybenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
5-hydroxybenzimidazole + NaMN ⟶ 5-hydroxybenzimidazole ribotide phosphate + H+ + nicotinate
- benzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + benzimidazole ⟶ H+ + benzimidazole ribotide phosphate + nicotinate
- benzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + benzimidazole ⟶ H+ + benzimidazole ribotide phosphate + nicotinate
- benzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + benzimidazole ⟶ H+ + benzimidazole ribotide phosphate + nicotinate
- trigonelline biosynthesis:
SAM + nicotinate ⟶ SAH + trigonelline
- adenosylcobalamin biosynthesis from adenosylcobinamide-GDP I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from adenosylcobinamide-GDP I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin salvage from cobinamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin salvage from cobinamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from adenosylcobinamide-GDP I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
α-ribazole + adenosylcobinamide-GDP ⟶ GMP + H+ + adenosylcobalamin
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin salvage from cobinamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from adenosylcobinamide-GDP I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from adenosylcobinamide-GDP I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin salvage from cobinamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
α-ribazole + adenosylcobinamide-GDP ⟶ GMP + H+ + adenosylcobalamin
- adenosylcobalamin biosynthesis II (aerobic):
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis II (late cobalt incorporation):
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin salvage from cobinamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin salvage from cobinamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin salvage from cobinamide II:
(R)-1-amino-2-propanol O-2-phosphate + ATP + adenosyl-cobyrate ⟶ ADP + H+ + adenosyl-cobinamide phosphate + phosphate
- adenosylcobalamin biosynthesis II (late cobalt incorporation):
(R)-1-amino-2-propanol O-2-phosphate + ATP + adenosyl-cobyrate ⟶ ADP + H+ + adenosyl-cobinamide phosphate + phosphate
- adenosylcobalamin biosynthesis I (early cobalt insertion):
(R)-1-amino-2-propanol O-2-phosphate + ATP + adenosyl-cobyrate ⟶ ADP + H+ + adenosyl-cobinamide phosphate + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
(R)-1-amino-2-propanol O-2-phosphate + ATP + adenosyl-cobyrate ⟶ ADP + H+ + adenosyl-cobinamide phosphate + phosphate
- adenosylcobalamin salvage from cobinamide I:
ATP + adenosylcobinamide ⟶ ADP + H+ + adenosyl-cobinamide phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
(R)-1-amino-2-propanol O-2-phosphate + ATP + adenosyl-cobyrate ⟶ ADP + H+ + adenosyl-cobinamide phosphate + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis I (early cobalt insertion):
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis II (late cobalt incorporation):
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis I (early cobalt insertion):
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis II (late cobalt incorporation):
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole ⟶ α-ribazole-5'-phosphate + H+ + nicotinate
- adenosylcobalamin salvage from cobinamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
5,6-dimethylbenzimidazole + NaMN ⟶ α-ribazole 5'-phosphate + H+ + nicotinate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
α-ribazole + adenosylcobinamide-GDP ⟶ GMP + H+ + adenosylcobalamin
- adenosylcobalamin salvage from cobinamide II:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I:
H2O + adenosylcobalamin 5'-phosphate ⟶ adenosylcobalamin + phosphate
- adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II:
α-ribazole + adenosylcobinamide-GDP ⟶ GMP + H+ + adenosylcobalamin
- adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + adenine ⟶ H+ + adenine ribotide phosphate + nicotinate
- adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + adenine ⟶ H+ + adenine ribotide phosphate + nicotinate
- adeninyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + adenine ⟶ H+ + adenine ribotide phosphate + nicotinate
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- aldoxime degradation:
nicotinamide ⟶ 3-cyanopyridine + H2O
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- superpathway of NAD biosynthesis in eukaryotes:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD salvage pathway V (PNC V cycle):
H2O + NAD+ + a [histone]-N6-acetyl-L-lysine ⟶ 2''-O-acetyl-ADP-ribose + a [histone]-L-lysine + nicotinamide
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway:
H2O + nicotinamide ⟶ ammonium + nicotinate
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- NAD salvage pathway I:
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I (PNC VI cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + NAD+ ⟶ ADP-D-ribose + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I (PNC VI cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- pyridine nucleotide cycling:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + NAD+ + diphosphate
- aldoxime degradation:
3-cyanopyridine + H2O ⟶ nicotinamide
- pyridine nucleotide cycling:
H2O + NAD+ ⟶ ADP-D-ribose + H+ + nicotinamide
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- superpathway of NAD biosynthesis in eukaryotes:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide mononucleotide ⟶ H+ + ammonia + nicotinate mononucleotide
- aldoxime degradation:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
β-nicotinamide D-ribonucleotide + H2O ⟶ β-nicotinate D-ribonucleotide + H+ + ammonia
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- pyridine nucleotide cycling (plants):
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- nicotine biosynthesis:
H2O + NaMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinate
- superpathway of nicotine biosynthesis:
H2O + NaMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinate
- 5-methylbenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
5-methylbenzimidazole + NaMN ⟶ 5-methylbenzimidazole ribotide phosphate + H+ + nicotinate
- 5-methylbenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
5-methylbenzimidazole + NaMN ⟶ 5-methylbenzimidazole ribotide phosphate + H+ + nicotinate
- 5-methylbenzimidazolyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
5-methylbenzimidazole + NaMN ⟶ 5-methylbenzimidazole ribotide phosphate + H+ + nicotinate
- phenyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP:
NaMN + phenol ⟶ H+ + nicotinate + phenyl ribotide phosphate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(139)
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of nicotine biosynthesis:
N-methylputrescine + H2O + O2 ⟶ N-methylaminobutanal + ammonium + hydrogen peroxide
- nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of nicotine biosynthesis:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Vahid Ganjiani, Amin Bigham-Sadegh, Nasrollah Ahmadi, Mohammad-Reza Divar, Abdolhamid Meimandi-Parizi, Mohammad Asude. The potential prophylactic and therapeutic impacts of niacin on ischemia/reperfusion injury of testis.
Journal of pediatric urology.
2024 Apr; 20(2):281.e1-281.e7. doi:
10.1016/j.jpurol.2024.01.001
. [PMID: 38212166] - Ying Huang, Fang-Yuan Liu, Jia-Tao Yang, Qian Zhao, Mei-Qi Zhu, Jing Wang, Shi-Yin Long, Qin-Hui Tuo, Cai-Ping Zhang, Li-Mei Lin, Duan-Fang Liao. Curcumin nicotinate increases LDL cholesterol uptake in hepatocytes through IDOL/LDL-R pathway regulation.
European journal of pharmacology.
2024 Jan; 966(?):176352. doi:
10.1016/j.ejphar.2024.176352
. [PMID: 38290567] - Peng Li, Guoyao Wu. Characteristics of Nutrition and Metabolism in Dogs and Cats.
Advances in experimental medicine and biology.
2024; 1446(?):55-98. doi:
10.1007/978-3-031-54192-6_4
. [PMID: 38625525] - Nanjiba Nawaz, Tyler Mistretta, Christian Karime, Jason Lewis, Emily Wolf. Cholestatic Drug-Induced Liver Injury in a Patient Taking High-Dose Niacin for Hyperlipidemia.
Journal of investigative medicine high impact case reports.
2024 Jan; 12(?):23247096231224349. doi:
10.1177/23247096231224349
. [PMID: 38193433] - Camelia Munteanu, Betty Schwartz. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency.
Nutrients.
2023 Dec; 16(1):. doi:
10.3390/nu16010024
. [PMID: 38201854] - Somayeh Saboori, Esmaeil Yousefi Rad, Jonathan Tammam, Pariyarath Sangeetha Thondre, Shelly Coe. Effects of niacin on apo A1 and B levels: a systematic review and meta-analysis of randomised controlled trials.
The British journal of nutrition.
2023 Dec; ?(?):1-11. doi:
10.1017/s000711452300288x
. [PMID: 38112076] - Shengnan Zhu, Qingning Yuan, Xinzhu Li, Xinheng He, Shiyi Shen, Dongxue Wang, Junrui Li, Xi Cheng, Xiaoqun Duan, H Eric Xu, Jia Duan. Molecular recognition of niacin and lipid-lowering drugs by the human hydroxycarboxylic acid receptor 2.
Cell reports.
2023 Nov; 42(11):113406. doi:
10.1016/j.celrep.2023.113406
. [PMID: 37952153] - Maria D Octavia, Hasmiwati Hasmiwati, Gusti Revilla, Erizal Zaini. Effect of multicomponent crystal of piperine-nicotinic acid on antihyperlipidemic activity in rats.
Pakistan journal of pharmaceutical sciences.
2023 Nov; 36(6):1777-1781. doi:
. [PMID: 38124418]
- Areeg Almubarak, Rana Osman, Joohyeong Lee, Il-Jeoung Yu, Yubyeol Jeon. Effects of niacin supplementation during in vitro culture on the developmental competence of porcine embryos.
Reproduction in domestic animals = Zuchthygiene.
2023 Oct; ?(?):. doi:
10.1111/rda.14483
. [PMID: 37786952] - Nicolas Dugré, Adrienne J Lindblad, Danielle Perry, G Michael Allan, Émélie Braschi, Jamie Falk, Liesbeth Froentjes, Scott R Garrison, Jessica E M Kirkwood, Christina S Korownyk, James P McCormack, Samantha S Moe, Allison Paige, Jen Potter, Betsy S Thomas, Joey Ton, Jennifer Young, Justin Weresch, Michael R Kolber. Lipid-lowering therapies for cardiovascular disease prevention and management in primary care: PEER umbrella systematic review of systematic reviews.
Canadian family physician Medecin de famille canadien.
2023 Oct; 69(10):701-711. doi:
10.46747/cfp.6910701
. [PMID: 37833094] - Greggory R Davis, Arnold G Nelson. Niacin supplementation impairs exercise performance.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2023 Oct; 93(5):385-391. doi:
10.1024/0300-9831/a000736
. [PMID: 34696617] - Nouman Khurshid, Muhammad Adnan Bukhari, Tanveer Ahmad, Zahoor Ahmad, Wajid Nasim Jatoi, Syed Mohsin Abbas, Amir Latif, Amber Raza, Muhammad Aurangzaib, Abeer Hashem, Graciela Dolores Avila-Quezada, Elsayed Fathi Abd Allah. Exogenously applied nicotinic acid alleviates drought stress by enhancing morpho-physiological traits and antioxidant defense mechanisms in wheat.
Ecotoxicology and environmental safety.
2023 Aug; 263(?):115350. doi:
10.1016/j.ecoenv.2023.115350
. [PMID: 37586200] - Leiyong Zhao, Shanshan Guo, Jie Yang, Qingqing Wang, Xixue Lu. Association between niacin intake and depression: A nationwide cross-sectional study.
Journal of affective disorders.
2023 Aug; ?(?):. doi:
10.1016/j.jad.2023.08.053
. [PMID: 37572704] - Joyati Das, Rahul Kumar, Sunil Kumar Yadav, Gopaljee Jha. Nicotinic Acid Catabolism Modulates Bacterial Mycophagy in Burkholderia gladioli Strain NGJ1.
Microbiology spectrum.
2023 06; 11(3):e0445722. doi:
10.1128/spectrum.04457-22
. [PMID: 37014254] - Xiaomeng Cheng, Yuanlong Hu, Zhishen Ruan, Guodong Zang, Xianhai Chen, Zhanjun Qiu. Association between B-vitamins intake and frailty among patients with chronic obstructive pulmonary disease.
Aging clinical and experimental research.
2023 Apr; 35(4):793-801. doi:
10.1007/s40520-023-02353-7
. [PMID: 36719551] - Yang Yang, Hye Jin Kang, Ruogu Gao, Jingjing Wang, Gye Won Han, Jeffrey F DiBerto, Lijie Wu, Jiahui Tong, Lu Qu, Yiran Wu, Ryan Pileski, Xuemei Li, Xuejun Cai Zhang, Suwen Zhao, Terry Kenakin, Quan Wang, Raymond C Stevens, Wei Peng, Bryan L Roth, Zihe Rao, Zhi-Jie Liu. Structural insights into the human niacin receptor HCA2-Gi signalling complex.
Nature communications.
2023 Mar; 14(1):1692. doi:
10.1038/s41467-023-37177-6
. [PMID: 36973264] - Jiayue Xia, Junhui Yu, Hai Xu, Yuhao Zhou, Hui Li, Shiyu Yin, Dengfeng Xu, Yuanyuan Wang, Hui Xia, Wang Liao, Shaokang Wang, Guiju Sun. Comparative effects of vitamin and mineral supplements in the management of type 2 diabetes in primary care: A systematic review and network meta-analysis of randomized controlled trials.
Pharmacological research.
2023 Feb; 188(?):106647. doi:
10.1016/j.phrs.2023.106647
. [PMID: 36638933] - Zheng Yu, Erqi Qin, Shirui Cheng, Han Yang, Rui Liu, Tian Xu, Yanqin Liu, Jing Yuan, Shuguang Yu, Jie Yang, Fanrong Liang. Gut microbiome in PCOS associates to serum metabolomics: a cross-sectional study.
Scientific reports.
2022 12; 12(1):22184. doi:
10.1038/s41598-022-25041-4
. [PMID: 36564416] - Hongan Ying, Lijie Gao, Nansheng Liao, Xijuan Xu, Wenfeng Yu, Weiwen Hong. Association between niacin and mortality among patients with cancer in the NHANES retrospective cohort.
BMC cancer.
2022 Nov; 22(1):1173. doi:
10.1186/s12885-022-10265-4
. [PMID: 36376861] - Xue-Qiao Zhao, Jie Sun, Daniel S Hippe, Daniel A Isquith, Gador Canton, Kiyofumi Yamada, Niranjan Balu, John R Crouse, Todd J Anderson, John Huston, Kevin D O'Brien, Thomas S Hatsukami, Chun Yuan. Magnetic Resonance Imaging of Intraplaque Hemorrhage and Plaque Lipid Content With Continued Lipid-Lowering Therapy: Results of a Magnetic Resonance Imaging Substudy in AIM-HIGH.
Circulation. Cardiovascular imaging.
2022 11; 15(11):e014229. doi:
10.1161/circimaging.122.014229
. [PMID: 36378778] - Claire P Muerdter, Megan M Powers, Sraboni Chowdhury, Alyssa L Mianecki, Gregory H LeFevre. Rapid plant uptake of isothiazolinone biocides and formation of metabolites by hydroponic Arabidopsis.
Environmental science. Processes & impacts.
2022 Oct; 24(10):1735-1747. doi:
10.1039/d2em00178k
. [PMID: 35943051] - Yushi Chen, Qishen Wang, Haitao Luo, Shanggui Deng, Yongqi Tian, Shaoyun Wang. Mechanisms of the ethanol extract of Gelidium amansii for slow aging in high-fat male Drosophila by metabolomic analysis.
Food & function.
2022 Oct; 13(19):10110-10120. doi:
10.1039/d2fo02116a
. [PMID: 36102920] - Renjian Zou, Chengwen Wei, Xuexia Zhang, Dongdong Zhou, Jing Xu. Alkaloids from endophytic fungus Aspergillus fumigatus HQD24 isolated from the Chinese mangrove plant Rhizophora mucronata.
Natural product research.
2022 Oct; 36(19):5069-5073. doi:
10.1080/14786419.2021.1916017
. [PMID: 34180322] - Caiping Zhang, Debiao Xiang, Qian Zhao, Susu Jiang, Chuyao Wang, Huixian Yang, Ying Huang, Yulin Yuan, Xuanyou Liu, Zhixin Huang, Yaling Zeng, Hongyan Wen, Shiyin Long, Hong Hao, Qinhui Tuo, Zhenguo Liu, Duanfang Liao. Curcumin nicotinate decreases serum LDL cholesterol through LDL receptor-mediated mechanism.
European journal of pharmacology.
2022 Sep; 931(?):175195. doi:
10.1016/j.ejphar.2022.175195
. [PMID: 35964656] - Jichang Luo, Tianze Huang, Ran Xu, Xue Wang, Yutong Yang, Long Li, Xiao Zhang, Yinhang Zhang, Renjie Yang, Jie Wang, Hai Yang, Yan Ma, Bin Yang, Tao Wang, Liqun Jiao. Impact of conventional lipid-lowering therapy on circulating levels of PCSK9: protocol for a systematic review and meta-analysis of randomised controlled trials.
BMJ open.
2022 Sep; 12(9):e061884. doi:
10.1136/bmjopen-2022-061884
. [PMID: 36691198] - Saheb Abbas Torki, Effat Bahadori, Soheila Shekari, Soroor Fathi, Maryam Gholamalizadeh, Naeemeh Hasanpour Ardekanizadeh, Bahareh Aminnezhad, Mina Ahmadzadeh, Mahtab Sotoudeh, Fatemeh Shafie, Samira Rastgoo, Farhad Vahid, Saeid Doaei. Association between the index of nutritional quality and lipid profile in adult women.
Endocrinology, diabetes & metabolism.
2022 09; 5(5):e358. doi:
10.1002/edm2.358
. [PMID: 35856460] - Preetha Balakrishnan, Sreerag Gopi. Highly efficient microencapsulation of phytonutrients by fractioned cellulose using biopolymer complexation technology.
Journal of complementary & integrative medicine.
2022 Sep; 19(3):607-618. doi:
10.1515/jcim-2022-0074
. [PMID: 35770826] - Shenghua Yang, Fan Zhang, Quanwen Li, Quanzhong Li. Niacin promotes the efflux of lysosomal cholesterol from macrophages via the CD38/NAADP signaling pathway.
Experimental biology and medicine (Maywood, N.J.).
2022 06; 247(12):1047-1054. doi:
10.1177/15353702221084632
. [PMID: 35369785] - Setsuko Komatsu, Hisateru Yamaguchi, Keisuke Hitachi, Kunihiro Tsuchida. Proteomic, Biochemical, and Morphological Analyses of the Effect of Silver Nanoparticles Mixed with Organic and Inorganic Chemicals on Wheat Growth.
Cells.
2022 05; 11(9):. doi:
10.3390/cells11091579
. [PMID: 35563885] - Minsun Jung, Kyung-Min Lee, Yebin Im, Seung Hyeok Seok, Hyewon Chung, Da Young Kim, Dohyun Han, Cheng Hyun Lee, Eun Hye Hwang, Soo Young Park, Jiwon Koh, Bohyun Kim, Ilias P Nikas, Hyebin Lee, Daehee Hwang, Han Suk Ryu. Nicotinamide (niacin) supplement increases lipid metabolism and ROS-induced energy disruption in triple-negative breast cancer: potential for drug repositioning as an anti-tumor agent.
Molecular oncology.
2022 05; 16(9):1795-1815. doi:
10.1002/1878-0261.13209
. [PMID: 35278276] - Daniel Priksz, Nora Lampe, Arpad Kovacs, Melissa Herwig, Mariann Bombicz, Balazs Varga, Tician Wilisicz, Judit Szilvassy, Aniko Posa, Rita Kiss, Rudolf Gesztelyi, Arnold Raduly, Reka Szekeres, Marcel Sieme, Zoltan Papp, Attila Toth, Nazha Hamdani, Zoltan Szilvassy, Bela Juhasz. Nicotinic-acid derivative BGP-15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy.
British journal of pharmacology.
2022 05; 179(10):2240-2258. doi:
10.1111/bph.15749
. [PMID: 34811751] - Dina Abushanab, Daoud Al-Badriyeh, Clara Marquina, Cate Bailey, Myriam Jaam, Danny Liew, Zanfina Ademi. A Systematic Review of Cost-Effectiveness of Non-Statin Lipid-Lowering Drugs for Primary and Secondary Prevention of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus.
Current problems in cardiology.
2022 Apr; ?(?):101211. doi:
10.1016/j.cpcardiol.2022.101211
. [PMID: 35460688] - Renata Novak Kujundžić. COVID-19: Are We Facing Secondary Pellagra Which Cannot Simply Be Cured by Vitamin B3?.
International journal of molecular sciences.
2022 Apr; 23(8):. doi:
10.3390/ijms23084309
. [PMID: 35457123] - Wenqian Wang, Lei Wang, Zhikun Zhao, Yunfeng Xia, Liang Li. Two Mn(II) and Zn(II) Coordination Polymers: Aqueous-Phase Detection of Nitroaromatic Explosives and Protective Effect on Atherosclerosis.
Journal of fluorescence.
2022 Mar; 32(2):593-601. doi:
10.1007/s10895-021-02885-z
. [PMID: 35015178] - Xiaojing Zhang, Baoyi Zhu, Peibin Lin, Xiaoping Liu, Jun Gao, Dazhong Yin, Jianwen Zeng, Baojian Liao, Zhanfang Kang. Niacin exacerbates β cell lipotoxicity in diet-induced obesity mice through upregulation of GPR109A and PPARγ2: Inhibition by incretin drugs.
Frontiers in endocrinology.
2022; 13(?):1057905. doi:
10.3389/fendo.2022.1057905
. [PMID: 36568082] - Thais Stradioto Melo, Caroline Hernke Thiel, Laryssa Barbosa Xavier da Silva, Sidnei Deuner, André Andres, Gabriele Espinel Ávila, Stefânia Nunes Pires, Germani Concenço. Cumulative potential and half-life of [imazapic + imazapyr] in lowland soils of Rio Grande Do Sul grown with clearfield® rice.
Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.
2022; 57(6):450-457. doi:
10.1080/03601234.2022.2063613
. [PMID: 35414314] - Lei Zhao, Hongjin Wang, Nannan Yuan, Guochun Yang, Jinwei Gao, Lixin Sun. Identification of the Metabolites of Scutebarbatine A in Rat Plasma, Bile, Urine, and feces by Using Ultra-high-performance Liquid Chromatography Coupled with Q Exactive Hybrid Quadrupole-orbitrap High-resolution Mass Spectrometry.
Current drug metabolism.
2022; 23(1):30-37. doi:
10.2174/1389200223666220126121253
. [PMID: 35081887] - Elisabeth Synnøve Nilsen Husebye, Bettina Riedel, Anne-Lise Bjørke-Monsen, Olav Spigset, Anne Kjersti Daltveit, Nils Erik Gilhus, Marte Helene Bjørk. Vitamin B status and association with antiseizure medication in pregnant women with epilepsy.
Epilepsia.
2021 12; 62(12):2968-2980. doi:
10.1111/epi.17076
. [PMID: 34590314] - Beibei Zhang, Jianzhong Hao, Hongji Yin, Chenlei Duan, Baowei Wang, Wenli Li. Effects of dietary nicotinic acid supplementation on meat quality, carcass characteristics, lipid metabolism, and tibia parameters of Wulong geese.
Poultry science.
2021 Nov; 100(11):101430. doi:
10.1016/j.psj.2021.101430
. [PMID: 34525445] - Charley-Lea Pollard, Zamira Gibb, Aleona Swegen, Edwina F Lawson, Christopher G Grupen. Nicotinic acid supplementation at a supraphysiological dose increases the bioavailability of NAD+ precursors in mares.
Journal of animal physiology and animal nutrition.
2021 Nov; 105(6):1154-1164. doi:
10.1111/jpn.13589
. [PMID: 34117670] - Azita H Talasaz, Parham Sadeghipour, Maryam Aghakouchakzadeh, Isaac Dreyfus, Hessam Kakavand, Hamid Ariannejad, Aakriti Gupta, Mahesh V Madhavan, Benjamin W Van Tassell, David Jimenez, Manuel Monreal, Muthiah Vaduganathan, John Fanikos, Dave L Dixon, Gregory Piazza, Sahil A Parikh, Deepak L Bhatt, Gregory Y H Lip, Gregg W Stone, Harlan M Krumholz, Peter Libby, Samuel Z Goldhaber, Behnood Bikdeli. Investigating Lipid-Modulating Agents for Prevention or Treatment of COVID-19: JACC State-of-the-Art Review.
Journal of the American College of Cardiology.
2021 10; 78(16):1635-1654. doi:
10.1016/j.jacc.2021.08.021
. [PMID: 34649702] - Harald John, Annika Richter, Horst Thiermann. Evidence of sulfur mustard poisoning by detection of the albumin-derived dipeptide biomarker C(-HETE)P after nicotinylation.
Drug testing and analysis.
2021 Sep; 13(9):1593-1602. doi:
10.1002/dta.3114
. [PMID: 34145783] - Weijia Peng, Zeyu Zhu, Yang Yang, Jiawei Hou, Junfeng Lu, Chen Chen, Fang Liu, Rongbiao Pi. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells.
Brain research bulletin.
2021 09; 174(?):250-259. doi:
10.1016/j.brainresbull.2021.06.014
. [PMID: 34171402] - Zarnab Ahmad, Khurram Bashir, Akihiro Matsui, Maho Tanaka, Ryosuke Sasaki, Akira Oikawa, Masami Yokota Hirai, Chaomurilege, Yanhui Zu, Maki Kawai-Yamada, Bushra Rashid, Tayyab Husnain, Motoaki Seki. Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis.
Plant molecular biology.
2021 Sep; 107(1-2):63-84. doi:
10.1007/s11103-021-01179-z
. [PMID: 34460049] - Hongwei Li, Xiaolin Xu, Liming Lu, Runlu Sun, Qi Guo, Qian Chen, Junjie Wang, Zhijian He, Yuling Zhang. The comparative impact among different intensive statins and combination therapies with niacin/ezetimibe on carotid intima-media thickness: a systematic review, traditional meta-analysis, and network meta-analysis of randomized controlled trials.
European journal of clinical pharmacology.
2021 Aug; 77(8):1133-1145. doi:
10.1007/s00228-021-03113-0
. [PMID: 33604752] - Graziella E Ronsein, Tomas Vaisar, W Sean Davidson, Karin E Bornfeldt, Jeffrey L Probstfield, Kevin D O'Brien, Xue-Qiao Zhao, Jay W Heinecke. Niacin Increases Atherogenic Proteins in High-Density Lipoprotein of Statin-Treated Subjects.
Arteriosclerosis, thrombosis, and vascular biology.
2021 08; 41(8):2330-2341. doi:
10.1161/atvbaha.121.316278
. [PMID: 34134520] - Areeg M Almubarak, Eunji Kim, Il-Jeoung Yu, Yubyeol Jeon. Supplementation with Niacin during in vitro maturation improves the quality of porcine embryos.
Theriogenology.
2021 Jul; 169(?):36-46. doi:
10.1016/j.theriogenology.2021.04.005
. [PMID: 33932650] - Chen-Sheng Yu, Qiao Wang, Joanna Bajsa-Hirschel, Charles L Cantrell, Stephen O Duke, Xing-Hai Liu. Synthesis, Crystal Structure, Herbicidal Activity, and SAR Study of Novel N-(Arylmethoxy)-2-chloronicotinamides Derived from Nicotinic Acid.
Journal of agricultural and food chemistry.
2021 Jun; 69(23):6423-6430. doi:
10.1021/acs.jafc.0c07538
. [PMID: 34085526] - Roy O Mathew, Robert S Rosenson, Radmila Lyubarova, Rafia Chaudhry, Salvatore P Costa, Sripal Bangalore, Mandeep S Sidhu. Concepts and Controversies: Lipid Management in Patients with Chronic Kidney Disease.
Cardiovascular drugs and therapy.
2021 06; 35(3):479-489. doi:
10.1007/s10557-020-07020-x
. [PMID: 32556851] - Negin Asadi, Mahin Izadi, Ali Aflatounian, Mansour Esmaeili-Dehaj, Mohammad Ebrahim Rezvani, Zeinab Hafizi. Chronic niacin administration ameliorates ovulation, histological changes in the ovary and adiponectin concentrations in a rat model of polycystic ovary syndrome.
Reproduction, fertility, and development.
2021 May; 33(7):447-454. doi:
10.1071/rd20306
. [PMID: 33751926] - Caroline E Geisler, Kendra E Miller, Susma Ghimire, Benjamin J Renquist. The Role of GPR109a Signaling in Niacin Induced Effects on Fed and Fasted Hepatic Metabolism.
International journal of molecular sciences.
2021 Apr; 22(8):. doi:
10.3390/ijms22084001
. [PMID: 33924461] - Xiaoying Yan, Shunyu Wang. The efficacy of niacin supplementation in type 2 diabetes patients: Study protocol of a randomized controlled trial.
Medicine.
2021 Mar; 100(12):e22272. doi:
10.1097/md.0000000000022272
. [PMID: 33761625] - Rong Li, Yu Li, Xiao Liang, Lu Yang, Min Su, Keng Po Lai. Network Pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets.
Briefings in bioinformatics.
2021 03; 22(2):1279-1290. doi:
10.1093/bib/bbaa300
. [PMID: 33169132] - Wei Ma, Ningling Sun, Chongyang Duan, Lianyou Zhao, Qi Hua, Yingxian Sun, Aimin Dang, Pingjin Gao, Peng Qu, Wei Cui, Luosha Zhao, Yugang Dong, Lianqun Cui, Xiaoyong Qi, Yinong Jiang, Jianhong Xie, Jun Li, Gang Wu, Xinping Du, Yong Huo, Pingyan Chen. Effectiveness of Levoamlodipine Maleate for Hypertension Compared with Amlodipine Besylate: a Pragmatic Comparative Effectiveness Study.
Cardiovascular drugs and therapy.
2021 02; 35(1):41-50. doi:
10.1007/s10557-020-07054-1
. [PMID: 32915349] - Hiroaki Kubo, Daiki Setoyama, Motoki Watabe, Masahiro Ohgidani, Kohei Hayakawa, Nobuki Kuwano, Mina Sato-Kasai, Ryoko Katsuki, Shigenobu Kanba, Dongchon Kang, Takahiro A Kato. Plasma acetylcholine and nicotinic acid are correlated with focused preference for photographed females in depressed males: an economic game study.
Scientific reports.
2021 01; 11(1):2199. doi:
10.1038/s41598-020-75115-4
. [PMID: 33500434] - Zhaoqing Liu, Xiaojian Huang, Zheng Jiang, Xun Tuo. Investigation of the binding properties between levamlodipine and HSA based on MCR-ALS and computer modeling.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2021 Jan; 245(?):118929. doi:
10.1016/j.saa.2020.118929
. [PMID: 32961448] - Zhuxian Zhang, Mengyi Liu, Chun Zhou, Panpan He, Yuanyuan Zhang, Huan Li, Qinqin Li, Chengzhang Liu, Xianhui Qin. Evaluation of Dietary Niacin and New-Onset Hypertension Among Chinese Adults.
JAMA network open.
2021 01; 4(1):e2031669. doi:
10.1001/jamanetworkopen.2020.31669
. [PMID: 33404619] - Haixia Song, Qin Qin, Caixia Yuan, Hong Li, Fang Zhang, Lingling Fan. Metabolomic Profiling of Poor Ovarian Response Identifies Potential Predictive Biomarkers.
Frontiers in endocrinology.
2021; 12(?):774667. doi:
10.3389/fendo.2021.774667
. [PMID: 34887835] - Prajakta B Kothawade, Asha B Thomas, Sohan S Chitlange. Novel Niacin Receptor Agonists: A Promising Strategy for the Treatment of Dyslipidemia.
Mini reviews in medicinal chemistry.
2021; 21(17):2481-2496. doi:
10.2174/1389557521666210125144921
. [PMID: 33550969] - Bertrand Lebouché, Alexis Yero, Tao Shi, Omar Farnos, Joel Singer, Ido Kema, Cecilia T Costiniuk, Réjean Thomas, Marie-Josée Brouillette, Kim Engler, Jean-Pierre Routy, Mohammad-Ali Jenabian. Impact of extended-release niacin on immune activation in HIV-infected immunological non-responders on effective antiretroviral therapy.
HIV research & clinical practice.
2020 12; 21(6):182-190. doi:
10.1080/25787489.2020.1866846
. [PMID: 33403940] - Bárbara B Garrido-Suárez, Gabino Garrido, Marian Castro-Labrada, Nelson Merino, Odalys Valdés, Zenia Pardo, Estael Ochoa-Rodríguez, Yamila Verdecia-Reyes, René Delgado-Hernández, Jozi Godoy-Figueiredo, Sergio H Ferreira. Anti-hypernociceptive and anti-inflammatory effects of JM-20: A novel hybrid neuroprotective compound.
Brain research bulletin.
2020 12; 165(?):185-197. doi:
10.1016/j.brainresbull.2020.10.003
. [PMID: 33096198] - Xin Li, Chenjing Wang, Ting Li, Yanping Liu, Shuqin Liu, Ye Tao, Yaping Ma, Xiaomeng Gao, Yu Cao. Bioequivalence of levamlodipine besylate tablets in healthy Chinese subjects: a single-dose and two-period crossover randomized study.
BMC pharmacology & toxicology.
2020 11; 21(1):80. doi:
10.1186/s40360-020-00459-6
. [PMID: 33213527] - Ayat Bahrami, Mohammad Reza Divar, Mehdi Azari, Mojtaba Kafi. Nicotinic Acid (Niacin) Supplementation in Cooling and Freezing Extenders Enhances Stallion Semen Characteristics.
Journal of equine veterinary science.
2020 11; 94(?):103236. doi:
10.1016/j.jevs.2020.103236
. [PMID: 33077098] - William D Watson, Kerstin N Timm, Andrew J Lewis, Jack J J Miller, Yaso Emmanuel, Kieran Clarke, Stefan Neubauer, Damian J Tyler, Oliver J Rider. Nicotinic acid receptor agonists impair myocardial contractility by energy starvation.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2020 11; 34(11):14878-14891. doi:
10.1096/fj.202000084rr
. [PMID: 32954525] - Daile Jia, Peiyuan Bai, Naifu Wan, Jiao Liu, Qian Zhu, Yuhu He, Guilin Chen, Jing Wang, Han Chen, Chen Wang, Ankang Lyu, Michael Lazarus, Yunchao Su, Yoshihiro Urade, Ying Yu, Jian Zhang, Yujun Shen. Niacin Attenuates Pulmonary Hypertension Through H-PGDS in Macrophages.
Circulation research.
2020 10; 127(10):1323-1336. doi:
10.1161/circresaha.120.316784
. [PMID: 32912104] - Robert C Oh, Evan T Trivette, Katie L Westerfield. Management of Hypertriglyceridemia: Common Questions and Answers.
American family physician.
2020 09; 102(6):347-354. doi:
NULL
. [PMID: 32931217] - Juliana A Donohue, Noel W Solomons, Daniela Hampel, Setareh Shahab-Ferdows, Mónica N Orozco, Lindsay H Allen. Micronutrient supplementation of lactating Guatemalan women acutely increases infants' intake of riboflavin, thiamin, pyridoxal, and cobalamin, but not niacin, in a randomized crossover trial.
The American journal of clinical nutrition.
2020 09; 112(3):669-682. doi:
10.1093/ajcn/nqaa147
. [PMID: 32649760] - Salvatore Bongarzone, Elisabetta Barbon, Alessandra Ferocino, Layla Alsulaimani, Joel Dunn, Jana Kim, Kavitha Sunassee, Antony Gee. Imaging niacin trafficking with positron emission tomography reveals in vivo monocarboxylate transporter distribution.
Nuclear medicine and biology.
2020 Sep; 88-89(?):24-33. doi:
10.1016/j.nucmedbio.2020.07.002
. [PMID: 32683248] - Han Fang, Zhuoyue Li, Emily C Graff, Kayleen J McCafferty, Robert L Judd. Niacin increases diet-induced hepatic steatosis in B6129 mice.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 09; 1865(9):158731. doi:
10.1016/j.bbalip.2020.158731
. [PMID: 32404278] - Scott M Gordon, Marcelo J Amar, Kianoush Jeiran, Michael Stagliano, Emma Staller, Martin P Playford, Nehal N Mehta, Tomas Vaisar, Alan T Remaley. Effect of niacin monotherapy on high density lipoprotein composition and function.
Lipids in health and disease.
2020 Aug; 19(1):190. doi:
10.1186/s12944-020-01350-3
. [PMID: 32825822] - Ibrahim A Naguib, Mohammed E Draz, Fatma F Abdallah. Impurity profiling high-performance-thin-layer chromatography method involving the assay of essential human micronutrient niacin with eco-scale assessment.
Biomedical chromatography : BMC.
2020 Aug; 34(8):e4858. doi:
10.1002/bmc.4858
. [PMID: 32307718] - María D Carretta, Yonathan Barría, Katherine Borquez, Bárbara Urra, Andrés Rivera, Pablo Alarcón, María A Hidalgo, Rafael A Burgos. β-hydroxybutyrate and hydroxycarboxylic acid receptor 2 agonists activate the AKT, ERK and AMPK pathways, which are involved in bovine neutrophil chemotaxis.
Scientific reports.
2020 07; 10(1):12491. doi:
10.1038/s41598-020-69500-2
. [PMID: 32719460] - Bogdan Doroftei, Ovidiu-Dumitru Ilie, Roxana-Oana Cojocariu, Alin Ciobica, Radu Maftei, Delia Grab, Emil Anton, Jack McKenna, Nitasha Dhunna, Gabriela Simionescu. Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects.
Molecules (Basel, Switzerland).
2020 Jul; 25(15):. doi:
10.3390/molecules25153323
. [PMID: 32707945] - Dan Xiang, Qian Zhang, Yang-Tian Wang. Effectiveness of niacin supplementation for patients with type 2 diabetes: A meta-analysis of randomized controlled trials.
Medicine.
2020 Jul; 99(29):e21235. doi:
10.1097/md.0000000000021235
. [PMID: 32702899] - Carolien P J Deen, Anna van der Veen, António W Gomes-Neto, Johanna M Geleijnse, Karin J Borgonjen-van den Berg, M Rebecca Heiner-Fokkema, Ido P Kema, Stephan J L Bakker. Urinary Excretion of N1-Methylnicotinamide and N1-Methyl-2-Pyridone-5-Carboxamide and Mortality in Kidney Transplant Recipients.
Nutrients.
2020 Jul; 12(7):. doi:
10.3390/nu12072059
. [PMID: 32664445] - Gauri Desai, Marie Vahter, Elena I Queirolo, Fabiana Peregalli, Nelly Mañay, Amy E Millen, Jihnhee Yu, Richard W Browne, Katarzyna Kordas. Vitamin B-6 Intake Is Modestly Associated with Arsenic Methylation in Uruguayan Children with Low-Level Arsenic Exposure.
The Journal of nutrition.
2020 05; 150(5):1223-1229. doi:
10.1093/jn/nxz331
. [PMID: 31913474] - Li Gao, Feng Zhou, Ke-Xin Wang, Yu-Zhi Zhou, Guan-Hua Du, Xue-Mei Qin. Baicalein protects PC12 cells from Aβ25-35-induced cytotoxicity via inhibition of apoptosis and metabolic disorders.
Life sciences.
2020 May; 248(?):117471. doi:
10.1016/j.lfs.2020.117471
. [PMID: 32112868] - Ahmed Medhat Hegazy, Ahmed S Hafez, Rania M Eid. Protective and antioxidant effects of copper-nicotinate complex against glycerol-induced nephrotoxicity in rats.
Drug and chemical toxicology.
2020 May; 43(3):234-239. doi:
10.1080/01480545.2018.1481084
. [PMID: 29944001] - Sergej Nadalin, Suzana Jonovska, Vesna Šendula Jengić, Alena Buretić-Tomljanović. An association between niacin skin flush response and plasma triglyceride levels in patients with schizophrenia.
Prostaglandins, leukotrienes, and essential fatty acids.
2020 04; 155(?):102084. doi:
10.1016/j.plefa.2020.102084
. [PMID: 32126479] - Lingyan Ye, Zheng Cao, Xiangru Lai, Ying Shi, Naiming Zhou. Niacin Ameliorates Hepatic Steatosis by Inhibiting De Novo Lipogenesis Via a GPR109A-Mediated PKC-ERK1/2-AMPK Signaling Pathway in C57BL/6 Mice Fed a High-Fat Diet.
The Journal of nutrition.
2020 04; 150(4):672-684. doi:
10.1093/jn/nxz303
. [PMID: 31858105] - C Zhao, P Hu, Y L Bai, C Xia. Plasma metabolic differences in cows affected by inactive ovaries or normal ovarian function post partum.
Polish journal of veterinary sciences.
2020 Mar; 23(1):59-67. doi:
10.24425/pjvs.2020.132749
. [PMID: 32233305] - K M Aragona, E M Rice, M Engstrom, P S Erickson. Supplementation of nicotinic acid to prepartum Holstein cows increases colostral immunoglobulin G, excretion of urinary purine derivatives, and feed efficiency in calves.
Journal of dairy science.
2020 Mar; 103(3):2287-2302. doi:
10.3168/jds.2019-17058
. [PMID: 31882224] - Shiva Kalantari, Saeed Chashmniam, Mohsen Nafar, Shiva Samavat, Danial Rezaie, Nooshin Dalili. A Noninvasive Urine Metabolome Panel as Potential Biomarkers for Diagnosis of T Cell-Mediated Renal Transplant Rejection.
Omics : a journal of integrative biology.
2020 03; 24(3):140-147. doi:
10.1089/omi.2019.0158
. [PMID: 32176594] - Mikaël Croyal, Valentin Blanchard, Khadija Ouguerram, Maud Chétiveaux, Léa Cabioch, Thomas Moyon, Stéphanie Billon-Crossouard, Audrey Aguesse, Karine Bernardeau, Cédric Le May, Laurent Flet, Gilles Lambert, Samy Hadjadj, Bertrand Cariou, Michel Krempf, Estelle Nobécourt-Dupuy. VLDL (Very-Low-Density Lipoprotein)-Apo E (Apolipoprotein E) May Influence Lp(a) (Lipoprotein [a]) Synthesis or Assembly.
Arteriosclerosis, thrombosis, and vascular biology.
2020 03; 40(3):819-829. doi:
10.1161/atvbaha.119.313877
. [PMID: 32078365] - Takuya Hashimoto, Ghazala Mustafa, Takumi Nishiuchi, Setsuko Komatsu. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress.
International journal of molecular sciences.
2020 Feb; 21(4):. doi:
10.3390/ijms21041300
. [PMID: 32075105] - Yiming Jiang, Minghua Jin, Jingkao Chen, Jinwu Yan, Peiqing Liu, Meicun Yao, Weibin Cai, Rongbiao Pi. Discovery of a novel niacin-lipoic acid dimer N2L attenuating atherosclerosis and dyslipidemia with non-flushing effects.
European journal of pharmacology.
2020 Feb; 868(?):172871. doi:
10.1016/j.ejphar.2019.172871
. [PMID: 31846627] - Artem V Artiukhov, Aneta Grabarska, Ewelina Gumbarewicz, Vasily A Aleshin, Thilo Kähne, Toshihiro Obata, Alexey V Kazantsev, Nikolay V Lukashev, Andrzej Stepulak, Alisdair R Fernie, Victoria I Bunik. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues.
Scientific reports.
2020 02; 10(1):1886. doi:
10.1038/s41598-020-58701-4
. [PMID: 32024885] - Bartłomiej Milanowski, Arkadiusz Hejduk, Marek A Bawiec, Emilia Jakubowska, Agnieszka Urbańska, Anna Wiśniewska, Grzegorz Garbacz, Janina Lulek. Biorelevant In Vitro Release Testing and In Vivo Study of Extended-Release Niacin Hydrophilic Matrix Tablets.
AAPS PharmSciTech.
2020 Jan; 21(3):83. doi:
10.1208/s12249-019-1600-z
. [PMID: 31989330] - Fernanda D'Avila da Silva, Pablo Andrei Nogara, Estael Ochoa-Rodríguez, Yanier Nuñez-Figueredo, Maylin Wong-Guerra, Denis Broock Rosemberg, João Batista Teixeira da Rocha. Molecular docking and in vitro evaluation of a new hybrid molecule (JM-20) on cholinesterase activity from different sources.
Biochimie.
2020 Jan; 168(?):297-306. doi:
10.1016/j.biochi.2019.11.011
. [PMID: 31770565] - Lílian Cristina Pereira, Eloisa Silva de Paula, Murilo Pazin, Maria Fernanda Hornos Carneiro, Denise Grotto, Fernando Barbosa, Daniel Junqueira Dorta. Niacin prevents mitochondrial oxidative stress caused by sub-chronic exposure to methylmercury.
Drug and chemical toxicology.
2020 Jan; 43(1):64-70. doi:
10.1080/01480545.2018.1497045
. [PMID: 30192646] - Rabiatuladawiyah Ruzmi, Muhammad Saiful Ahmad-Hamdani, Norida Mazlan. Ser-653-Asn substitution in the acetohydroxyacid synthase gene confers resistance in weedy rice to imidazolinone herbicides in Malaysia.
PloS one.
2020; 15(9):e0227397. doi:
10.1371/journal.pone.0227397
. [PMID: 32925921] - Fabien Despas, Vanessa Rousseau, Margaux Lafaurie, Claire De Canecaude, Geneviève Durrieu, Haleh Bagheri, François Montastruc, Jean-Louis Montastruc. Are lipid-lowering drugs associated with a risk of cataract? A pharmacovigilance study.
Fundamental & clinical pharmacology.
2019 Dec; 33(6):695-702. doi:
10.1111/fcp.12496
. [PMID: 31251421] - Rikang Wang, Lang Zhang, Rifang Liao, Qian Li, Rongbiao Pi, Xiaobo Yang. N2L, a novel lipoic acid-niacin dimer protects HT22 cells against β-amyloid peptide-induced damage through attenuating apoptosis.
Metabolic brain disease.
2019 12; 34(6):1761-1770. doi:
10.1007/s11011-019-00482-5
. [PMID: 31478183] - Juncai Chen, Zhenguo Yang, Guozhong Dong. Niacin nutrition and rumen-protected niacin supplementation in dairy cows: an updated review.
The British journal of nutrition.
2019 11; 122(10):1103-1112. doi:
10.1017/s0007114519002216
. [PMID: 31474235] - Éva Szentirmai, Levente Kapás. Nicotinic acid promotes sleep through prostaglandin synthesis in mice.
Scientific reports.
2019 11; 9(1):17084. doi:
10.1038/s41598-019-53648-7
. [PMID: 31745228] - Sony Tuteja. Activation of HCAR2 by niacin: benefits beyond lipid lowering.
Pharmacogenomics.
2019 11; 20(16):1143-1150. doi:
10.2217/pgs-2019-0092
. [PMID: 31617441] - Richard A Wilson, Jessie Fernandez, Raquel O Rocha, Margarita Marroquin-Guzman, Janet D Wright. Genetic evidence for Magnaporthe oryzae vitamin B3 acquisition from rice cells.
Microbiology (Reading, England).
2019 11; 165(11):1198-1202. doi:
10.1099/mic.0.000855
. [PMID: 31517594] - Radmila Lyubarova, John J Albers, Santica M Marcovina, Yao Yao, Ruth McBride, Alexandru Topliceanu, Todd Anderson, Jerome L Fleg, Patrice Desvigne-Nickens, Moti L Kashyap, Mark E McGovern, William E Boden. Effects of Extended-Release Niacin on Quartile Lp-PLA2 Levels and Clinical Outcomes in Statin-treated Patients with Established Cardiovascular Disease and Low Baseline Levels of HDL-Cholesterol: Post Hoc Analysis of the AIM HIGH Trial.
Journal of cardiovascular pharmacology and therapeutics.
2019 11; 24(6):534-541. doi:
10.1177/1074248419852955
. [PMID: 31131629] - Nicholas A Marston, Robert P Giugliano, KyungAh Im, Michael G Silverman, Michelle L O'Donoghue, Stephen D Wiviott, Brian A Ference, Marc S Sabatine. Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Multiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials.
Circulation.
2019 10; 140(16):1308-1317. doi:
10.1161/circulationaha.119.041998
. [PMID: 31530008]