AI3-00944 (BioDeep_00000861264)

Main id: BioDeep_00000018360

 

PANOMIX_OTCML-2023


代谢物信息卡片


InChI=1\C10H10O\c1-9(11)7-8-10-5-3-2-4-6-10\h2-8H,1H3\b8-7

化学式: C10H10O (146.073161)
中文名称: 反式-4-苯基-3-丁烯-2-酮, 亚苄基丙酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(/C=C/C1=CC=CC=C1)=O
InChI: InChI=1S/C10H10O/c1-9(11)7-8-10-5-3-2-4-6-10/h2-8H,1H3/b8-7+

描述信息

Benzylideneacetone is an endogenous metabolite.
Benzylideneacetone is an endogenous metabolite.
trans-Benzylideneacetone (trans-Benzalacetone), a metabolite of gram-negative entomopathogenic bacterium Xenorhabdus nematophila, is an enzyme inhibitor against phospholipase A2 (PLA2). trans-Benzylideneacetone is an immunosuppressant[1].
trans-Benzylideneacetone (trans-Benzalacetone), a metabolite of gram-negative entomopathogenic bacterium Xenorhabdus nematophila, is an enzyme inhibitor against phospholipase A2 (PLA2). trans-Benzylideneacetone is an immunosuppressant[1].
trans-Benzylideneacetone (trans-Benzalacetone), a metabolite of gram-negative entomopathogenic bacterium Xenorhabdus nematophila, is an enzyme inhibitor against phospholipase A2 (PLA2). trans-Benzylideneacetone is an immunosuppressant[1].

同义名列表

60 个代谢物同义名

InChI=1\C10H10O\c1-9(11)7-8-10-5-3-2-4-6-10\h2-8H,1H3\b8-7; 3-BUTEN,2-ONE,4-PHENYL (TRANS) BENZALACETONE; 4-07-00-01003 (Beilstein Handbook Reference); 2-07-00-00287 (Beilstein Handbook Reference); 3-BUTEN-2-ONE, 4-PHENYL-, (E)-; trans-4-Phenyl-3-butene-2-one; Benzylidene acetone (natural); trans-4-Phenylbut-3-en-2-one; trans-4-Phenyl-3-buten-2-one; (3E)-4-Phenylbut-3-en-2-one; 2-Phenylvinyl methyl ketone; Methyl 2-phenylvinyl ketone; Methyl .beta.-styryl ketone; (e)-4-Phenyl-3-buten-2-one; (E)-4-phenylbut-3-en-2-one; Methyl trans-styryl ketone; Methyl beta-styryl ketone; 3-Buten-2-one, 4-phenyl-; trans-Benzylideneacetone; Ghl.PD_Mitscher_leg0.147; trans-Benzylidenacetone; 4-Phenyl-3-butene-2-one; 4-PHENYL-3-BUTEN-2-ONE; 4-Phenylbut-3-en-2-one; Ketone, methyl styryl; Benzalaceton [German]; Methyl styryl acetone; Methyl styryl ketone; STYRYL methyl ketone; Benzilidene acetone; Benzylidene acetone; trans-Benzalacetone; Benzilideneacetone; Benzylideneacetone; 4-Phenylbutenone; EINECS 204-555-1; EINECS 217-587-6; W288101_ALDRICH; NCGC00091356-01; Acetocinnamone; 147885_ALDRICH; 241091_ALDRICH; Benzalacetone; FEMA No. 2881; ZINC01589953; Benzalaceton; NCI60_004369; WLN: 1V1U1R; BRN 0742046; BRN 0742047; 11960_FLUKA; CCRIS 5319; AI3-00944; 1896-62-4; AI3-52291; T5396015; 122-57-6; NSC 5605; NSC5605; TPBO



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Rosanna Caliandro, Ivan Polsinelli, Nicola Demitri, Francesco Musiani, Stefan Martens, Stefano Benini. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates. International journal of biological macromolecules. 2021 Feb; 171(?):89-99. doi: 10.1016/j.ijbiomac.2020.12.190. [PMID: 33412202]
  • Jianwei Chen, Yaojia Lu, Xinyi Ye, Mahmoud Emam, Huawei Zhang, Hong Wang. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. European journal of medicinal chemistry. 2020 Dec; 207(?):112741. doi: 10.1016/j.ejmech.2020.112741. [PMID: 32871343]
  • Wei Chao, Jeng-Shyan Deng, Shyh-Shyun Huang, Pei-Ying Li, Yu-Chia Liang, Guan-Jhong Huang. 3, 4-dihydroxybenzalacetone attenuates lipopolysaccharide-induced inflammation in acute lung injury via down-regulation of MMP-2 and MMP-9 activities through suppressing ROS-mediated MAPK and PI3K/AKT signaling pathways. International immunopharmacology. 2017 Sep; 50(?):77-86. doi: 10.1016/j.intimp.2017.06.014. [PMID: 28644965]
  • Wenrui Ma, Chunmei Liu, Mingfeng Yang, Feiyan Xue, Qing Chen, Lanqing Ma, Heshu Lü. [Preparation and crystallization of Polygonum cuspidatum benzalacetone synthase]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2016 Feb; 32(2):250-8. doi: . [PMID: 27382775]
  • Heshu Lu, Mingfeng Yang, Chunmei Liu, Ping Lu, Huaixing Cang, Lanqing Ma. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase. Acta crystallographica. Section F, Structural biology and crystallization communications. 2013 Aug; 69(Pt 8):871-5. doi: 10.1107/s1744309113017004. [PMID: 23908031]
  • NULL. Toxicology and carcinogenesis studies of methyl trans-styryl ketone (CAS NO 1896-62-4) in F344/N rats and B6C3F1 mice (feed and dermal studies). National Toxicology Program technical report series. 2012 May; ?(572):1-188. doi: NULL. [PMID: 22692228]
  • Toshiyuki Wakimoto, Hiroyuki Morita, Ikuro Abe. Engineering of plant type III polyketide synthases. Methods in enzymology. 2012; 515(?):337-58. doi: 10.1016/b978-0-12-394290-6.00016-1. [PMID: 22999181]
  • Andreas Natsch, Tina Haupt, Heike Laue. Relating skin sensitizing potency to chemical reactivity: reactive Michael acceptors inhibit NF-κB signaling and are less sensitizing than S(N)Ar- and S(N)2- reactive chemicals. Chemical research in toxicology. 2011 Nov; 24(11):2018-27. doi: 10.1021/tx2003678. [PMID: 22023385]
  • Chrisitine Jisoo Song, Samyeol Seo, Sony Shrestha, Yonggyun Kim. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. Journal of microbiology and biotechnology. 2011 Mar; 21(3):317-22. doi: 10.4014/jmb.1010.10034. [PMID: 21464604]
  • Hiroyuki Morita, Yoshihiko Shimokawa, Michikazu Tanio, Ryohei Kato, Hiroshi Noguchi, Shigetoshi Sugio, Toshiyuki Kohno, Ikuro Abe. A structure-based mechanism for benzalacetone synthase from Rheum palmatum. Proceedings of the National Academy of Sciences of the United States of America. 2010 Jan; 107(2):669-73. doi: 10.1073/pnas.0909982107. [PMID: 20080733]
  • Said A Said, Abd el-Galil E Amr, Nermien M Sabry, Mohamed M Abdalla. Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. European journal of medicinal chemistry. 2009 Dec; 44(12):4787-92. doi: 10.1016/j.ejmech.2009.07.013. [PMID: 19682771]
  • Indrani Mitra, Achintya Saha, Kunal Roy. Quantitative structure-activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors. Chemical biology & drug design. 2009 May; 73(5):526-36. doi: 10.1111/j.1747-0285.2009.00801.x. [PMID: 19370813]
  • Hiroyuki Morita, Michikazu Tanio, Shin Kondo, Ryohei Kato, Kiyofumi Wanibuchi, Hiroshi Noguchi, Shigetoshi Sugio, Ikuro Abe, Toshiyuki Kohno. Crystallization and preliminary crystallographic analysis of a plant type III polyketide synthase that produces benzalacetone. Acta crystallographica. Section F, Structural biology and crystallization communications. 2008 Apr; 64(Pt 4):304-6. doi: 10.1107/s1744309108006775. [PMID: 18391433]
  • Tsuyoshi Abe, Hiroyuki Morita, Hisashi Noma, Toshiyuki Kohno, Hiroshi Noguchi, Ikuro Abe. Structure function analysis of benzalacetone synthase from Rheum palmatum. Bioorganic & medicinal chemistry letters. 2007 Jun; 17(11):3161-6. doi: 10.1016/j.bmcl.2007.03.029. [PMID: 17383877]
  • Noriko Motohashi, Ayumi Takahashi, Chisako Yamagami, Yutaka Saito. Antioxidant effects of hydroxybenzalacetones on peroxynitrite-induced lipid peroxidation in red blood cell membrane ghost and SOS response in Salmonella typhimurium TA4107/pSK1002. Chemical & pharmaceutical bulletin. 2005 Aug; 53(8):1003-5. doi: 10.1248/cpb.53.1003. [PMID: 16079535]
  • Chisako Yamagami, Noriko Motohashi, Tatsuhiko Emoto, Akira Hamasaki, Takao Tanahashi, Naotaka Nagakura, Yoshito Takeuchi. Quantitative structure-activity relationship analyses of antioxidant and free radical scavenging activities for hydroxybenzalacetones. Bioorganic & medicinal chemistry letters. 2004 Nov; 14(22):5629-33. doi: 10.1016/j.bmcl.2004.08.052. [PMID: 15482937]
  • Dongjin Ji, Youngkeun Yi, Ga-Hwa Kang, Yong-Hwa Choi, Pankyung Kim, Nam-In Baek, Yonggyun Kim. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS microbiology letters. 2004 Oct; 239(2):241-8. doi: 10.1016/j.femsle.2004.08.041. [PMID: 15476972]
  • Ikuro Abe, Yukie Sano, Yusuke Takahashi, Hiroshi Noguchi. Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases. The Journal of biological chemistry. 2003 Jul; 278(27):25218-26. doi: 10.1074/jbc.m303276200. [PMID: 12724310]
  • Ikuro Abe, Yusuke Takahashi, Hiroshi Noguchi. Enzymatic formation of an unnatural C(6)-C(5) aromatic polyketide by plant type III polyketide synthases. Organic letters. 2002 Oct; 4(21):3623-6. doi: 10.1021/ol0201409. [PMID: 12375903]
  • R A Dick, M K Kwak, T R Sutter, T W Kensler. Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. The Journal of biological chemistry. 2001 Nov; 276(44):40803-10. doi: 10.1074/jbc.m105487200. [PMID: 11524419]
  • S Pedapudi, C K Chin, H Pedersen. Production and elicitation of benzalacetone and the raspberry ketone in cell suspension cultures of Rubus idaeus. Biotechnology progress. 2000 May; 16(3):346-9. doi: 10.1021/bp000033i. [PMID: 10835233]
  • J M Sauer, J Bao, R L Smith, R K Kuester, M Mayersohn, I G Sipes. Absorption, disposition, and metabolism of trans-methyl styryl ketone in female B6C3F1 mice. Drug metabolism and disposition: the biological fate of chemicals. 1997 Oct; 25(10):1184-90. doi: NULL. [PMID: 9321522]
  • J M Sauer, R L Smith, J Bao, M J Kattnig, R K Kuester, T D McClure, M Mayersohn, I G Sipes. Oral and topical absorption, disposition kinetics, and the metabolic fate of trans-methyl styryl ketone in the male Fischer 344 rat. Drug metabolism and disposition: the biological fate of chemicals. 1997 Jun; 25(6):732-9. doi: NULL. [PMID: 9193875]
  • H Dai, F W Edens, R M Roe. Glutathione S-transferases in the Japanese quail: tissue distribution and purification of the liver isozymes. Journal of biochemical toxicology. 1996; 11(2):85-96. doi: 10.1002/(sici)1522-7146(1996)11:2<85::aid-jbt6>3.0.co;2-q. [PMID: 8884469]
  • M C Carrillo, C E Carnovale, J A Monti. Effect of aflatoxin B1 treatment in vivo on the in vitro activity of hepatic and extrahepatic glutathione S-transferase. Toxicology letters. 1990 Jan; 50(1):107-16. doi: 10.1016/0378-4274(90)90257-m. [PMID: 2104996]
  • O Aagenaes, C B van der Hagen, S Refsum. Hereditary recurrent intrahepatic cholestasis from birth. Archives of disease in childhood. 1968 Dec; 43(232):646-57. doi: 10.1136/adc.43.232.646. [PMID: 5702224]