Dilinoleoylphosphatidylcholine (BioDeep_00000852612)

   


代谢物信息卡片


Dilinoleoylphosphatidylcholine

化学式: C44H80NO8P (781.5621)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 100%

分子结构信息

SMILES: CCCCCC=CCC=CCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCC=CCCCCC
InChI: InChI=1S/C44H80NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h14-17,20-23,42H,6-13,18-19,24-41H2,1-5H3/b16-14-,17-15-,22-20-,23-21-

描述信息

同义名列表

1 个代谢物同义名

Dilinoleoylphosphatidylcholine



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

120 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(120)

  • phospholipid desaturation: 1-oleoyl-2-α-linolenoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-α-linolenoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-α-linolenoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • choline biosynthesis III: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • superpathway of choline biosynthesis: H2O + phosphocholine ⟶ choline + phosphate
  • phosphatidylcholine biosynthesis II: CDP-choline + a 1,2-diacyl-sn-glycerol ⟶ CMP + H+ + a phosphatidylcholine
  • diacylglycerol and triacylglycerol biosynthesis: sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
  • triacylglycerol biosynthesis (Chlamydomonas): sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
  • phosphatidylcholine biosynthesis I: ATP + choline ⟶ ADP + H+ + phosphocholine
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain acyl-CoA + diphosphate
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain acyl-CoA + diphosphate
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phosphatidylcholine acyl editing: a 1-acyl-sn-glycero-3-phosphocholine + an acyl-CoA ⟶ a phosphatidylcholine + coenzyme A
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain acyl-CoA + diphosphate
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain fatty acyl-CoA + diphosphate
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain fatty acyl-CoA + diphosphate
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain fatty acyl-CoA + diphosphate

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Ruijuan Dong, Yan Tan, Angran Fan, Zehuan Liao, Hangrui Liu, Peng Wei. Molecular Dynamics of the Recruitment of Immunoreceptor Signaling Module DAP12 Homodimer to Lipid Raft Boundary Regulated by PIP2. The journal of physical chemistry. B. 2020 01; 124(3):504-510. doi: 10.1021/acs.jpcb.9b11095. [PMID: 31888335]
  • Karli Lipinski, Matthew J McKay, Fahmida Afrose, Ashley N Martfeld, Roger E Koeppe, Denise V Greathouse. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes. Chembiochem : a European journal of chemical biology. 2019 11; 20(21):2784-2792. doi: 10.1002/cbic.201900282. [PMID: 31150136]
  • Christina L Ting, Neha Awasthi, Marcus Müller, Jochen S Hub. Metastable Prepores in Tension-Free Lipid Bilayers. Physical review letters. 2018 Mar; 120(12):128103. doi: 10.1103/physrevlett.120.128103. [PMID: 29694074]
  • Herre Jelger Risselada. Membrane Fusion Stalks and Lipid Rafts: A Love-Hate Relationship. Biophysical journal. 2017 Jun; 112(12):2475-2478. doi: 10.1016/j.bpj.2017.04.031. [PMID: 28522140]
  • Benjamin E Brummel, Anthony R Braun, Jonathan N Sachs. Polyunsaturated chains in asymmetric lipids disorder raft mixtures and preferentially associate with α-Synuclein. Biochimica et biophysica acta. Biomembranes. 2017 Apr; 1859(4):529-536. doi: 10.1016/j.bbamem.2016.10.006. [PMID: 27742354]
  • Michael Holmboe, Per Larsson, Jamshed Anwar, Christel A S Bergström. Partitioning into Colloidal Structures of Fasted State Intestinal Fluid Studied by Molecular Dynamics Simulations. Langmuir : the ACS journal of surfaces and colloids. 2016 12; 32(48):12732-12740. doi: 10.1021/acs.langmuir.6b03008. [PMID: 27934534]
  • Ashley N Martfeld, Denise V Greathouse, Roger E Koeppe. Ionization Properties of Histidine Residues in the Lipid Bilayer Membrane Environment. The Journal of biological chemistry. 2016 09; 291(36):19146-56. doi: 10.1074/jbc.m116.738583. [PMID: 27440045]
  • Ardeshir Goliaei, Edmond Y Lau, Upendra Adhikari, Eric Schwegler, Max L Berkowitz. Behavior of P85 and P188 Poloxamer Molecules: Computer Simulations Using United-Atom Force-Field. The journal of physical chemistry. B. 2016 08; 120(33):8631-41. doi: 10.1021/acs.jpcb.6b03030. [PMID: 27232763]
  • Guo-Hua Li. Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain. Journal of molecular graphics & modelling. 2015 Sep; 61(?):107-14. doi: 10.1016/j.jmgm.2015.06.015. [PMID: 26209765]
  • Oksana Kel, Amr Tamimi, Michael D Fayer. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy. The journal of physical chemistry. B. 2015 Jul; 119(29):8852-62. doi: 10.1021/jp503940k. [PMID: 24901902]
  • Afra Panahi, Charles L Brooks. Membrane environment modulates the pKa values of transmembrane helices. The journal of physical chemistry. B. 2015 Apr; 119(13):4601-7. doi: 10.1021/acs.jpcb.5b00289. [PMID: 25734901]
  • Qing Liang, Qing-Yan Wu, Zhi-Yong Wang. Effect of hydrophobic mismatch on domain formation and peptide sorting in the multicomponent lipid bilayers in the presence of immobilized peptides. The Journal of chemical physics. 2014 Aug; 141(7):074702. doi: 10.1063/1.4891931. [PMID: 25149801]
  • Natalia G Zhegalova, Sergey A Dergunov, Steven T Wang, Eugene Pinkhassik, Mikhail Y Berezin. Design of fluorescent nanocapsules as ratiometric nanothermometers. Chemistry (Weinheim an der Bergstrasse, Germany). 2014 Aug; 20(33):10292-7. doi: 10.1002/chem.201402828. [PMID: 25044240]
  • Agustín Mangiarotti, Benjamín Caruso, Natalia Wilke. Phase coexistence in films composed of DLPC and DPPC: a comparison between different model membrane systems. Biochimica et biophysica acta. 2014 Jul; 1838(7):1823-31. doi: 10.1016/j.bbamem.2014.02.012. [PMID: 24582710]
  • Tatyana I Rokitskaya, Elena A Kotova, Igor I Agapov, Mikhail M Moisenovich, Yuri N Antonenko. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen. FEBS letters. 2014 May; 588(9):1590-5. doi: 10.1016/j.febslet.2014.02.046. [PMID: 24613917]
  • Oksana Kel, Amr Tamimi, Michael D Fayer. Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes. Proceedings of the National Academy of Sciences of the United States of America. 2014 Jan; 111(3):918-23. doi: 10.1073/pnas.1323110111. [PMID: 24395796]
  • Ipsita Basu, Amitabha Chattopadhyay, Chaitali Mukhopadhyay. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch. Biochimica et biophysica acta. 2014 Jan; 1838(1 Pt B):328-38. doi: 10.1016/j.bbamem.2013.10.005. [PMID: 24125683]
  • Davit Hakobyan, Andreas Heuer. Key molecular requirements for raft formation in lipid/cholesterol membranes. PloS one. 2014; 9(2):e87369. doi: 10.1371/journal.pone.0087369. [PMID: 24498317]
  • N M Payton, M F Wempe, J L Betker, T W Randolph, T J Anchordoquy. Lyophilization of a triply unsaturated phospholipid: effects of trace metal contaminants. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2013 Oct; 85(2):306-13. doi: 10.1016/j.ejpb.2013.03.028. [PMID: 23567484]
  • Ele Ferrannini, Andrea Natali, Stefania Camastra, Monica Nannipieri, Andrea Mari, Klaus-Peter Adam, Michael V Milburn, Gabi Kastenmüller, Jerzy Adamski, Tiinamaija Tuomi, Valeriya Lyssenko, Leif Groop, Walter E Gall. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013 May; 62(5):1730-7. doi: 10.2337/db12-0707. [PMID: 23160532]
  • Davit Hakobyan, Andreas Heuer. Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations. The journal of physical chemistry. B. 2013 Apr; 117(14):3841-51. doi: 10.1021/jp312245y. [PMID: 23470157]
  • Ken Akamatsu. Development of 'leaky' liposome triggered by radiation applicable to a drug reservoir and a simple radiation dosimeter. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine. 2013 Apr; 74(?):144-51. doi: 10.1016/j.apradiso.2013.01.024. [PMID: 23428839]
  • H Kristian Ijäs, Max Lönnfors, Thomas K M Nyholm. Sterol affinity for phospholipid bilayers is influenced by hydrophobic matching between lipids and transmembrane peptides. Biochimica et biophysica acta. 2013 Mar; 1828(3):932-7. doi: 10.1016/j.bbamem.2012.11.034. [PMID: 23220446]
  • Ramon Guixà-González, Juan Manuel Ramírez-Anguita, Agnieszka A Kaczor, Jana Selent. Simulating G protein-coupled receptors in native-like membranes: from monomers to oligomers. Methods in cell biology. 2013; 117(?):63-90. doi: 10.1016/b978-0-12-408143-7.00004-9. [PMID: 24143972]
  • Vanessa Point, Anaïs Bénarouche, Ikram Jemel, Goetz Parsiegla, Gérard Lambeau, Frédéric Carrière, Jean-François Cavalier. Effects of the propeptide of group X secreted phospholipase A(2) on substrate specificity and interfacial activity on phospholipid monolayers. Biochimie. 2013 Jan; 95(1):51-8. doi: 10.1016/j.biochi.2012.07.023. [PMID: 22967966]
  • Tuo Wang, Lakmini Widanapathirana, Yan Zhao, Mei Hong. Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy. Langmuir : the ACS journal of surfaces and colloids. 2012 Dec; 28(49):17071-8. doi: 10.1021/la303661p. [PMID: 23153411]
  • Aniket Magarkar, Esra Karakas, Michał Stepniewski, Tomasz Róg, Alex Bunker. Molecular dynamics simulation of PEGylated bilayer interacting with salt ions: a model of the liposome surface in the bloodstream. The journal of physical chemistry. B. 2012 Apr; 116(14):4212-9. doi: 10.1021/jp300184z. [PMID: 22420691]
  • Jan Domański, Siewert J Marrink, Lars V Schäfer. Transmembrane helices can induce domain formation in crowded model membranes. Biochimica et biophysica acta. 2012 Apr; 1818(4):984-94. doi: 10.1016/j.bbamem.2011.08.021. [PMID: 21884678]
  • Joakim P M Jämbeck, Alexander P Lyubartsev. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. The journal of physical chemistry. B. 2012 Mar; 116(10):3164-79. doi: 10.1021/jp212503e. [PMID: 22352995]
  • Megan M Koerner, Luis A Palacio, Johnnie W Wright, Kelly S Schweitzer, Bruce D Ray, Horia I Petrache. Electrodynamics of lipid membrane interactions in the presence of zwitterionic buffers. Biophysical journal. 2011 Jul; 101(2):362-9. doi: 10.1016/j.bpj.2011.05.062. [PMID: 21767488]
  • Anja Penk, Matthias Müller, Holger A Scheidt, Dieter Langosch, Daniel Huster. Structure and dynamics of the lipid modifications of a transmembrane α-helical peptide determined by ²H solid-state NMR spectroscopy. Biochimica et biophysica acta. 2011 Mar; 1808(3):784-91. doi: 10.1016/j.bbamem.2010.12.015. [PMID: 21192915]
  • Lars V Schäfer, Djurre H de Jong, Andrea Holt, Andrzej J Rzepiela, Alex H de Vries, Bert Poolman, J Antoinette Killian, Siewert J Marrink. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proceedings of the National Academy of Sciences of the United States of America. 2011 Jan; 108(4):1343-8. doi: 10.1073/pnas.1009362108. [PMID: 21205902]
  • Chunhua Wang, Fengbin Ye, Gustavo F Velardez, Gustavo F Valardez, Günther H Peters, Peter Westh. Affinity of four polar neurotransmitters for lipid bilayer membranes. The journal of physical chemistry. B. 2011 Jan; 115(1):196-203. doi: 10.1021/jp108368w. [PMID: 21158460]
  • Maria Laura Fanani, Bruno Maggio. Liquid-liquid domain miscibility driven by composition and domain thickness mismatch in ternary lipid monolayers. The journal of physical chemistry. B. 2011 Jan; 115(1):41-9. doi: 10.1021/jp107344t. [PMID: 21142046]
  • Christoph Stoll, Hart Stadnick, Oliver Kollas, Jelena L Holovati, Birgit Glasmacher, Jason P Acker, Willem F Wolkers. Liposomes alter thermal phase behavior and composition of red blood cell membranes. Biochimica et biophysica acta. 2011 Jan; 1808(1):474-81. doi: 10.1016/j.bbamem.2010.09.012. [PMID: 20883663]
  • Wei Liu, Ned A Porter, Claus Schneider, Alan R Brash, Huiyong Yin. Formation of 4-hydroxynonenal from cardiolipin oxidation: Intramolecular peroxyl radical addition and decomposition. Free radical biology & medicine. 2011 Jan; 50(1):166-78. doi: 10.1016/j.freeradbiomed.2010.10.709. [PMID: 21047551]
  • Karl-Josef Gundermann, Ann Kuenker, Erwin Kuntz, Marek Droździk. Activity of essential phospholipids (EPL) from soybean in liver diseases. Pharmacological reports : PR. 2011; 63(3):643-59. doi: 10.1016/s1734-1140(11)70576-x. [PMID: 21857075]
  • Huan Rui, Wonpil Im. Protegrin-1 orientation and physicochemical properties in membrane bilayers studied by potential of mean force calculations. Journal of computational chemistry. 2010 Dec; 31(16):2859-67. doi: 10.1002/jcc.21580. [PMID: 20589740]
  • Alan W Szmodis, Craig D Blanchette, Marjorie L Longo, Christine A Orme, Atul N Parikh. Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures. Biointerphases. 2010 Dec; 5(4):120-30. doi: 10.1116/1.3524295. [PMID: 21219033]
  • Sandra Schick, Lirong Chen, Edwin Li, Janice Lin, Ingo Köper, Kalina Hristova. Assembly of the m2 tetramer is strongly modulated by lipid chain length. Biophysical journal. 2010 Sep; 99(6):1810-7. doi: 10.1016/j.bpj.2010.07.026. [PMID: 20858425]
  • Joel H Nyström, Max Lönnfors, Thomas K M Nyholm. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. Biophysical journal. 2010 Jul; 99(2):526-33. doi: 10.1016/j.bpj.2010.04.052. [PMID: 20643071]
  • Jeffery B Klauda, Richard M Venable, J Alfredo Freites, Joseph W O'Connor, Douglas J Tobias, Carlos Mondragon-Ramirez, Igor Vorobyov, Alexander D MacKerell, Richard W Pastor. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The journal of physical chemistry. B. 2010 Jun; 114(23):7830-43. doi: 10.1021/jp101759q. [PMID: 20496934]
  • Subhadip Ghosh, Aniruddha Adhikari, Supratik Sen Mojumdar, Kankan Bhattacharyya. A fluorescence correlation spectroscopy study of the diffusion of an organic dye in the gel phase and fluid phase of a single lipid vesicle. The journal of physical chemistry. B. 2010 May; 114(17):5736-41. doi: 10.1021/jp911971p. [PMID: 20387866]
  • Alberto Rodríguez-Pulido, Alberto Martín-Molina, César Rodríguez-Beas, Oscar Llorca, Emilio Aicart, Elena Junquera. A theoretical and experimental approach to the compaction process of DNA by dioctadecyldimethylammonium bromide/zwitterionic mixed liposomes. The journal of physical chemistry. B. 2009 Nov; 113(47):15648-61. doi: 10.1021/jp906777g. [PMID: 19877682]
  • Wonpil Im, Jinhyuk Lee, Taehoon Kim, Huan Rui. Novel free energy calculations to explore mechanisms and energetics of membrane protein structure and function. Journal of computational chemistry. 2009 Aug; 30(11):1622-33. doi: 10.1002/jcc.21320. [PMID: 19496166]
  • Sarah D Cady, Tatiana V Mishanina, Mei Hong. Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. Journal of molecular biology. 2009 Jan; 385(4):1127-41. doi: 10.1016/j.jmb.2008.11.022. [PMID: 19061899]
  • Joshua D Deetz, Roland Faller, Ahmet Palazoglu. Characterization of domain instabilities in lipid bilayers by Karhunen-Loeve analysis. Biochimica et biophysica acta. 2008 Apr; 1778(4):1154-80. doi: 10.1016/j.bbamem.2007.12.027. [PMID: 18280801]
  • Sarah D Cady, Catherine Goodman, Chad D Tatko, William F DeGrado, Mei Hong. Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. Journal of the American Chemical Society. 2007 May; 129(17):5719-29. doi: 10.1021/ja070305e. [PMID: 17417850]
  • Joanna E Adrian, Klaas Poelstra, Gerrit L Scherphof, Dirk K F Meijer, Anne-miek van Loenen-Weemaes, Catharina Reker-Smit, Henriëtte W M Morselt, Peter Zwiers, Jan A A M Kamps. Effects of a new bioactive lipid-based drug carrier on cultured hepatic stellate cells and liver fibrosis in bile duct-ligated rats. The Journal of pharmacology and experimental therapeutics. 2007 May; 321(2):536-43. doi: 10.1124/jpet.106.117945. [PMID: 17314198]
  • Li Li, Ji-Xin Cheng. Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles. Biochemistry. 2006 Oct; 45(39):11819-26. doi: 10.1021/bi060808h. [PMID: 17002282]
  • Jeff M Switzer, Sandra V Bennun, Marjorie L Longo, Ahmet Palazoglu, Roland Faller. Karhunen-Loeve analysis for pattern description in phase separated lipid bilayer systems. The Journal of chemical physics. 2006 Jun; 124(23):234906. doi: 10.1063/1.2203071. [PMID: 16821952]
  • Wan-Chen Lin, Craig D Blanchette, Timothy V Ratto, Marjorie L Longo. Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study. Biophysical journal. 2006 Jan; 90(1):228-37. doi: 10.1529/biophysj.105.067066. [PMID: 16214871]
  • Robert F Jacob, R Preston Mason. Lipid peroxidation induces cholesterol domain formation in model membranes. The Journal of biological chemistry. 2005 Nov; 280(47):39380-7. doi: 10.1074/jbc.m507587200. [PMID: 16195227]
  • Shuichi Toraya, Takashi Nagao, Kazushi Norisada, Satoru Tuzi, Hazime Saitô, Shunsuke Izumi, Akira Naito. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature. Biophysical journal. 2005 Nov; 89(5):3214-22. doi: 10.1529/biophysj.105.059311. [PMID: 16113109]
  • Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophysical journal. 2005 Sep; 89(3):1812-26. doi: 10.1529/biophysj.105.064030. [PMID: 15980180]
  • Assaf Zemel, Avinoam Ben-Shaul, Sylvio May. Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation. European biophysics journal : EBJ. 2005 May; 34(3):230-42. doi: 10.1007/s00249-004-0445-9. [PMID: 15619088]
  • John F Teiber, Dragomir I Draganov, Bert N La Du. Purified human serum PON1 does not protect LDL against oxidation in the in vitro assays initiated with copper or AAPH. Journal of lipid research. 2004 Dec; 45(12):2260-8. doi: 10.1194/jlr.m400213-jlr200. [PMID: 15342686]
  • Tomoko Nii, Fumiyoshi Ishii. Properties of various phosphatidylcholines as emulsifiers or dispersing agents in microparticle preparations for drug carriers. Colloids and surfaces. B, Biointerfaces. 2004 Nov; 39(1-2):57-63. doi: 10.1016/j.colsurfb.2004.08.017. [PMID: 15542341]
  • Shuichi Toraya, Katsuyuki Nishimura, Akira Naito. Dynamic structure of vesicle-bound melittin in a variety of lipid chain lengths by solid-state NMR. Biophysical journal. 2004 Nov; 87(5):3323-35. doi: 10.1529/biophysj.104.046102. [PMID: 15339796]
  • Yun-Wei Chiang, Yuhei Shimoyama, Gerald W Feigenson, Jack H Freed. Dynamic molecular structure of DPPC-DLPC-cholesterol ternary lipid system by spin-label electron spin resonance. Biophysical journal. 2004 Oct; 87(4):2483-96. doi: 10.1529/biophysj.104.044438. [PMID: 15454445]
  • Roland Faller, Siewert-Jan Marrink. Simulation of domain formation in DLPC-DSPC mixed bilayers. Langmuir : the ACS journal of surfaces and colloids. 2004 Aug; 20(18):7686-93. doi: 10.1021/la0492759. [PMID: 15323520]
  • Jarrod J Buffy, Melissa J McCormick, Sungsool Wi, Alan Waring, Robert I Lehrer, Mei Hong. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Biochemistry. 2004 Aug; 43(30):9800-12. doi: 10.1021/bi036243w. [PMID: 15274634]
  • Tze-Lee Phang, Elias I Franses. Expulsion of bovine serum albumin from the air/water interface by a sparingly soluble lecithin lipid. Journal of colloid and interface science. 2004 Jul; 275(2):477-87. doi: 10.1016/j.jcis.2004.02.088. [PMID: 15178276]
  • Sagar A Pandit, David Bostick, Max L Berkowitz. Complexation of phosphatidylcholine lipids with cholesterol. Biophysical journal. 2004 Mar; 86(3):1345-56. doi: 10.1016/s0006-3495(04)74206-x. [PMID: 14990465]
  • Chan-Lan Kim, Atsushi Umetani, Toshio Matsui, Naotaka Ishiguro, Morikazu Shinagawa, Motohiro Horiuchi. Antigenic characterization of an abnormal isoform of prion protein using a new diverse panel of monoclonal antibodies. Virology. 2004 Mar; 320(1):40-51. doi: 10.1016/j.virol.2003.10.026. [PMID: 15003861]
  • T A Harroun, M-P Nieh, M J Watson, V A Raghunathan, G Pabst, M R Morrow, J Katsaras. Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure. Physical review. E, Statistical, nonlinear, and soft matter physics. 2004 Mar; 69(3 Pt 1):031906. doi: 10.1103/physreve.69.031906. [PMID: 15089321]
  • J Gallová, D Uhríková, A Islamov, A Kuklin, P Balgavý. Effect of cholesterol on the bilayer thickness in unilamellar extruded DLPC and DOPC liposomes: SANS contrast variation study. General physiology and biophysics. 2004 Mar; 23(1):113-28. doi: ". [PMID: 15270132]
  • Sandrine Morandat, Muriel Bortolato, Geneviève Anker, Alain Doutheau, Michel Lagarde, Jean-Paul Chauvet, Bernard Roux. Plasmalogens protect unsaturated lipids against UV-induced oxidation in monolayer. Biochimica et biophysica acta. 2003 Oct; 1616(2):137-46. doi: 10.1016/j.bbamem.2003.08.001. [PMID: 14561471]
  • Jarrod J Buffy, Teresa Hong, Satoru Yamaguchi, Alan J Waring, Robert I Lehrer, Mei Hong. Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2+. Biophysical journal. 2003 Oct; 85(4):2363-73. doi: 10.1016/s0006-3495(03)74660-8. [PMID: 14507700]
  • C Gicquaud, J-P Chauvet, P Tancrède. Surface film pressure of actin: interactions with lipids in mixed monolayers. Biochemical and biophysical research communications. 2003 Sep; 308(4):995-1000. doi: 10.1016/s0006-291x(03)01505-5. [PMID: 12927818]
  • Alexander Spaar, Tim Salditt. Short range order of hydrocarbon chains in fluid phospholipid bilayers studied by x-ray diffraction from highly oriented membranes. Biophysical journal. 2003 Sep; 85(3):1576-84. doi: 10.1016/s0006-3495(03)74589-5. [PMID: 12944274]
  • M Jiménez-Atiénzar, J Cabanes, F Gandía-Herrero, J Escribano, F García-Carmona, M Pérez-Gilabert. Determination of the phospholipase activity of patatin by a continuous spectrophotometric assay. Lipids. 2003 Jun; 38(6):677-82. doi: 10.1007/s11745-003-1114-9. [PMID: 12934679]
  • Josette V Ricker, Nelly M Tsvetkova, Willem F Wolkers, Chad Leidy, Fern Tablin, Marjorie Longo, John H Crowe. Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophysical journal. 2003 May; 84(5):3045-51. doi: 10.1016/s0006-3495(03)70030-7. [PMID: 12719235]
  • Fuyuki Tokumasu, Albert J Jin, Gerald W Feigenson, James A Dvorak. Nanoscopic lipid domain dynamics revealed by atomic force microscopy. Biophysical journal. 2003 Apr; 84(4):2609-18. doi: 10.1016/s0006-3495(03)75066-8. [PMID: 12668469]
  • Songyan Zheng, Joseph Strzalka, David H Jones, Stanley J Opella, J Kent Blasie. Comparative structural studies of Vpu peptides in phospholipid monolayers by x-ray scattering. Biophysical journal. 2003 Apr; 84(4):2393-415. doi: 10.1016/s0006-3495(03)75045-0. [PMID: 12668448]
  • Timothy V Ratto, Marjorie L Longo. Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach. Biophysical journal. 2002 Dec; 83(6):3380-92. doi: 10.1016/s0006-3495(02)75338-1. [PMID: 12496105]
  • Matthew J Hasik, Dennis H Kim, Laurens E Howle, David Needham, Donald P Prush. Evaluation of synthetic phospholipid ultrasound contrast agents. Ultrasonics. 2002 Nov; 40(9):973-82. doi: 10.1016/s0041-624x(02)00384-0. [PMID: 12385954]
  • Qi Cao, Ki M Mak, Charles S Lieber. DLPC decreases TGF-beta1-induced collagen mRNA by inhibiting p38 MAPK in hepatic stellate cells. American journal of physiology. Gastrointestinal and liver physiology. 2002 Nov; 283(5):G1051-61. doi: 10.1152/ajpgi.00128.2002. [PMID: 12381518]
  • Susana A Sanchez, Luis A Bagatolli, Enrico Gratton, Theodore L Hazlett. A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophysical journal. 2002 Apr; 82(4):2232-43. doi: 10.1016/s0006-3495(02)75569-0. [PMID: 11916878]
  • K P Navder, E Baraona, C S Lieber. Dilinoleoylphosphatidylcholine protects human low density lipoproteins against oxidation. Atherosclerosis. 2000 Sep; 152(1):89-95. doi: 10.1016/s0021-9150(99)00454-2. [PMID: 10996343]
  • C M Oneta, K M Mak, C S Lieber. Dilinoleoylphosphatidylcholine selectively modulates lipopolysaccharide-induced Kupffer cell activation. The Journal of laboratory and clinical medicine. 1999 Nov; 134(5):466-70. doi: 10.1016/s0022-2143(99)90167-1. [PMID: 10560939]
  • S I Aleynik, M A Leo, U Takeshige, M K Aleynik, C S Lieber. Dilinoleoylphosphatidylcholine is the active antioxidant of polyenylphosphatidylcholine. Journal of investigative medicine : the official publication of the American Federation for Clinical Research. 1999 Nov; 47(9):507-12. doi: ". [PMID: 10572382]
  • R P Mason, M F Walter, M W Trumbore, E G Olmstead, P E Mason. Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine. Journal of molecular and cellular cardiology. 1999 Jan; 31(1):275-81. doi: 10.1006/jmcc.1998.0867. [PMID: 10072734]
  • A Gigliozzi, R Romeo, F Fraioli, A Cantafora, M Delle Monache, A Cardilli, A F Attili, E Scafato, L Carli, D Alvaro. Effect of S-adenosyl-L-methionine and dilinoleoylphosphatidylcholine on liver lipid composition and ethanol hepatotoxicity in isolated perfused rat liver. Digestive diseases and sciences. 1998 Oct; 43(10):2211-22. doi: 10.1023/a:1026606303738. [PMID: 9790456]
  • K Yagi, Y Shidoji, S Komura, H Kojima, N Ohishi. Dissipation of mitochondrial membrane potential by exogenous phospholipid monohydroperoxide and protection against this effect by transfection of cells with phospholipid hydroperoxide glutathione peroxidase gene. Biochemical and biophysical research communications. 1998 Apr; 245(2):528-33. doi: 10.1006/bbrc.1998.8417. [PMID: 9571189]
  • R J Morrison, S S Singhal, A Bidani, T A Heming, S Awasthi. Glutathione S-transferases of rabbit lung macrophages. Toxicology and applied pharmacology. 1998 Feb; 148(2):229-36. doi: 10.1006/taap.1997.8339. [PMID: 9473530]
  • J Girshman, D V Greathouse, R E Koeppe, O S Andersen. Gramicidin channels in phospholipid bilayers with unsaturated acyl chains. Biophysical journal. 1997 Sep; 73(3):1310-9. doi: 10.1016/s0006-3495(97)78164-5. [PMID: 9284299]
  • L R Barclay, F Antunes, Y Egawa, K L McAllister, K Mukai, T Nishi, M R Vinqvist. The efficiency of antioxidants delivered by liposomal transfer. Biochimica et biophysica acta. 1997 Aug; 1328(1):1-12. doi: 10.1016/s0005-2736(97)00057-6. [PMID: 9298940]
  • J J Zimmerman, W Ciesielski, J Lewandoski. Neutrophil-mediated phospholipid peroxidation assessed by gas chromatography-mass spectroscopy. The American journal of physiology. 1997 Aug; 273(2 Pt 1):C653-61. doi: 10.1152/ajpcell.1997.273.2.c653. [PMID: 9277363]
  • R P Mason, M F Walter, P E Mason. Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis. Free radical biology & medicine. 1997; 23(3):419-25. doi: 10.1016/s0891-5849(97)00101-9. [PMID: 9214578]
  • R Yamauchi, Y Yagi, K Kato. Oxidation of alpha-tocopherol during the peroxidation of dilinoleoylphosphatidylcholine in liposomes. Bioscience, biotechnology, and biochemistry. 1996 Apr; 60(4):616-20. doi: 10.1271/bbb.60.616. [PMID: 8829527]
  • K Oette, G Kühn, A Römer, R Niemann, K J Gundermann, R Schumacher. [Absorption of di-linoleoylphosphatidylcholine after oral administration]. Arzneimittel-Forschung. 1995 Aug; 45(8):875-9. doi: NULL. [PMID: 7575751]
  • J Y Wang, T Shibata, T Ueki, T Miyazawa. Susceptibility for hydroperoxide formation of phosphatidylcholine and phosphatidylethanolamine in liposomes. Journal of nutritional science and vitaminology. 1995 Jun; 41(3):273-80. doi: 10.3177/jnsv.41.273. [PMID: 7472672]
  • K L Horan, B S Lutzke, A R Cazers, J M McCall, D E Epps. Kinetic evaluation of lipophilic inhibitors of lipid peroxidation in DLPC liposomes. Free radical biology & medicine. 1994 Dec; 17(6):587-96. doi: 10.1016/0891-5849(94)90098-1. [PMID: 7867975]
  • C Galli, C R Sirtori, C Mosconi, L Medini, G Gianfranceschi, V Vaccarino, C Scolastico. Prolonged retention of doubly labeled phosphatidylcholine in human plasma and erythrocytes after oral administration. Lipids. 1992 Dec; 27(12):1005-12. doi: 10.1007/bf02535580. [PMID: 1487948]
  • M L Wratten, G van Ginkel, A A van't Veld, A Bekker, E E van Faassen, A Sevanian. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry. 1992 Nov; 31(44):10901-7. doi: 10.1021/bi00159a034. [PMID: 1329957]
  • J Wang, T Miyazawa, K Fujimoto, Z Wang, T Nozawa. The inverted hexagonal phase is more sensitive to hydroperoxidation than the multilamellar phase in phosphatidylcholine and phosphatidylethanolamine aqueous dispersions. FEBS letters. 1992 Sep; 310(2):106-10. doi: 10.1016/0014-5793(92)81307-8. [PMID: 1397256]
  • J J Zimmerman, J R Lewandoski. In vitro phosphatidylcholine peroxidation mediated by activated human neutrophils. Circulatory shock. 1991 Jun; 34(2):231-9. doi: ". [PMID: 1934323]
  • L R Barclay. The cooperative antioxidant role of glutathione with a lipid-soluble and a water-soluble antioxidant during peroxidation of liposomes initiated in the aqueous phase and in the lipid phase. The Journal of biological chemistry. 1988 Nov; 263(31):16138-42. doi: 10.1016/s0021-9258(18)37569-0. [PMID: 3182788]