5-Bromo-4-chloro-3-indolyl beta-d-glucuronide (BioDeep_00000850031)

   


代谢物信息卡片


5-Bromo-4-chloro-3-indolyl beta-d-glucuronide

化学式: C14H13BrClNO7 (420.9563878000001)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=C(C2=C1NC=C2OC3C(C(C(C(O3)C(=O)O)O)O)O)Cl)Br
InChI: InChI=1S/C14H13BrClNO7/c15-4-1-2-5-7(8(4)16)6(3-17-5)23-14-11(20)9(18)10(19)12(24-14)13(21)22/h1-3,9-12,14,17-20H,(H,21,22)/t9-,10-,11+,12-,14+/m0/s1

描述信息

An indolyl carbohydrate that is the beta-D-glucuronide of indoxyl in which the indole moiety is substituted at positions 4 and 5 by chlorine and bromine, respectively

同义名列表

1 个代谢物同义名

5-Bromo-4-chloro-3-indolyl beta-d-glucuronide



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jianyong Wu, Jill R Stewart, Mark D Sobsey, Chris Cormency, Michael B Fisher, Jamie K Bartram. Rapid Detection of Escherichia coli in Water Using Sample Concentration and Optimized Enzymatic Hydrolysis of Chromogenic Substrates. Current microbiology. 2018 Jul; 75(7):827-834. doi: 10.1007/s00284-018-1454-8. [PMID: 29468301]
  • Yu Ling, Chunyu Zhang, Tong Chen, Huaiqing Hao, Peng Liu, Ray A Bressan, Paul M Hasegawa, Jing Bo Jin, Jinxing Lin. Mutation in SUMO E3 ligase, SIZ1, disrupts the mature female gametophyte in Arabidopsis. PloS one. 2012; 7(1):e29470. doi: 10.1371/journal.pone.0029470. [PMID: 22253727]
  • Catherine Fontenelle, Carlos Blanco, Morgane Arrieta, Virginie Dufour, Annie Trautwetter. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BMC microbiology. 2011 May; 11(?):100. doi: 10.1186/1471-2180-11-100. [PMID: 21569462]
  • Colette A ten Hove, Mark de Jong, Dmitry Lapin, Annemiek Andel, Gabino F Sanchez-Perez, Yoshiaki Tarutani, Yoshihito Suzuki, Renze Heidstra, Guido van den Ackerveken. Trans-repression of gene activity upstream of T-DNA tagged RLK902 links Arabidopsis root growth inhibition and downy mildew resistance. PloS one. 2011 Apr; 6(4):e19028. doi: 10.1371/journal.pone.0019028. [PMID: 21532992]
  • Jennifer N Salt, Keiko Yoshioka, Wolfgang Moeder, Daphne R Goring. Altered germination and subcellular localization patterns for PUB44/SAUL1 in response to stress and phytohormone treatments. PloS one. 2011; 6(6):e21321. doi: 10.1371/journal.pone.0021321. [PMID: 21738636]
  • Alfonso Méndez-Bravo, Carlos Calderón-Vázquez, Enrique Ibarra-Laclette, Javier Raya-González, Enrique Ramírez-Chávez, Jorge Molina-Torres, Angel A Guevara-García, José López-Bucio, Luis Herrera-Estrella. Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. PloS one. 2011; 6(11):e27251. doi: 10.1371/journal.pone.0027251. [PMID: 22076141]
  • Mireille Tittel-Elmer, Etienne Bucher, Larissa Broger, Olivier Mathieu, Jerzy Paszkowski, Isabelle Vaillant. Stress-induced activation of heterochromatic transcription. PLoS genetics. 2010 Oct; 6(10):e1001175. doi: 10.1371/journal.pgen.1001175. [PMID: 21060865]
  • David Weisman, Merianne Alkio, Adán Colón-Carmona. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC plant biology. 2010 Apr; 10(?):59. doi: 10.1186/1471-2229-10-59. [PMID: 20377843]
  • Hernán G Bondino, Estela M Valle. A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana. BMC molecular biology. 2009 Oct; 10(?):95. doi: 10.1186/1471-2199-10-95. [PMID: 19835620]
  • Dejun Li, Chunhua Yang, Xiaobing Li, Guobiao Ji, Lihuang Zhu. Sense and antisense OsDof12 transcripts in rice. BMC molecular biology. 2008 Sep; 9(?):80. doi: 10.1186/1471-2199-9-80. [PMID: 18796165]
  • Loganathan Arul, George Benita, Ponnusamy Balasubramanian. Functional insight for beta-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1. Bioinformation. 2008 May; 2(8):339-43. doi: 10.6026/97320630002339. [PMID: 18685721]
  • William A Moskal, Hank C Wu, Beverly A Underwood, Wei Wang, Christopher D Town, Yongli Xiao. Experimental validation of novel genes predicted in the un-annotated regions of the Arabidopsis genome. BMC genomics. 2007 Jan; 8(?):18. doi: 10.1186/1471-2164-8-18. [PMID: 17229318]
  • David Honys, Sung-Aeong Oh, David Renák, Maarten Donders, Blanka Solcová, James Andrew Johnson, Rita Boudová, David Twell. Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis. BMC plant biology. 2006 Dec; 6(?):31. doi: 10.1186/1471-2229-6-31. [PMID: 17184530]
  • H Kodaka, M Ishikawa, M Iwata, F Kashitani, S Mizuochi, K Yamaguchi. Evaluation of new medium with chromogenic substrates for members of the family Enterobacteriaceae in urine samples. Journal of clinical microbiology. 1995 Jan; 33(1):199-201. doi: 10.1128/jcm.33.1.199-201.1995. [PMID: 7699041]