Methylglyoxal bis(guanylhydrazone) dihydrochloride (BioDeep_00000845705)

   


代谢物信息卡片


Methylglyoxal bis(guanylhydrazone) dihydrochloride

化学式: C5H14Cl2N8 (256.0718)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=NN=C(N)N)C=NN=C(N)N.Cl.Cl
InChI: 2*1H/b10-2+,11-3+

描述信息

C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor
C471 - Enzyme Inhibitor > C2090 - S-Adenosyl-Methionine Decarboxylase Inhibitor

同义名列表

1 个代谢物同义名

Methylglyoxal bis(guanylhydrazone) dihydrochloride



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Norin Nabil Hamouda, Chris Van den Haute, Roeland Vanhoutte, Ragna Sannerud, Mujahid Azfar, Rupert Mayer, Álvaro Cortés Calabuig, Johannes V Swinnen, Patrizia Agostinis, Veerle Baekelandt, Wim Annaert, Francis Impens, Steven H L Verhelst, Jan Eggermont, Shaun Martin, Peter Vangheluwe. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. The Journal of biological chemistry. 2021 Jan; 296(?):100182. doi: 10.1074/jbc.ra120.013908. [PMID: 33310703]
  • Edward C Lulai, Linda L Olson, Karen K Fugate, Jonathan D Neubauer, Larry G Campbell. Inhibitors of tri- and tetra- polyamine oxidation, but not diamine oxidation, impair the initial stages of wound-induced suberization. Journal of plant physiology. 2020 Mar; 246-247(?):153092. doi: 10.1016/j.jplph.2019.153092. [PMID: 32065919]
  • Weiyang Zhang, Zhuanqin Cao, Qun Zhou, Jing Chen, Gengwen Xu, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianchang Yang, Hao Zhang. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice. PloS one. 2016; 11(10):e0165321. doi: 10.1371/journal.pone.0165321. [PMID: 27780273]
  • Fatima Ezzohra Ikbal, José Antonio Hernández, Gregorio Barba-Espín, Tayeb Koussa, Aziz Aziz, Mohamed Faize, Pedro Diaz-Vivancos. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. Journal of plant physiology. 2014 Jun; 171(10):779-88. doi: 10.1016/j.jplph.2014.02.006. [PMID: 24877669]
  • Biao Gong, Xiu Li, Sean Bloszies, Dan Wen, Shasha Sun, Min Wei, Yan Li, Fengjuan Yang, Qinghua Shi, Xiufeng Wang. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free radical biology & medicine. 2014 Jun; 71(?):36-48. doi: 10.1016/j.freeradbiomed.2014.02.018. [PMID: 24589373]
  • Jose A Gil-Amado, Maria C Gomez-Jimenez. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. Planta. 2012 Jun; 235(6):1221-37. doi: 10.1007/s00425-011-1570-1. [PMID: 22167259]
  • Xingxue Huang, Zhilong Bie. Cinnamic acid-inhibited ribulose-1,5-bisphosphate carboxylase activity is mediated through decreased spermine and changes in the ratio of polyamines in cowpea. Journal of plant physiology. 2010 Jan; 167(1):47-53. doi: 10.1016/j.jplph.2009.07.002. [PMID: 19651461]
  • Min-Gui Zhao, Ruo-Jing Liu, Lei Chen, Qiu-Ying Tian, Wen-Hao Zhang. Glucose-induced inhibition of seed germination in Lotus japonicus is alleviated by nitric oxide and spermine. Journal of plant physiology. 2009 Jan; 166(2):213-8. doi: 10.1016/j.jplph.2008.03.001. [PMID: 18456370]
  • Ilona Rácz, Emil Páldi, Gabriella Szalai, Tibor Janda, Magdolna Pál, Demeter Lásztity. S-methylmethionine reduces cell membrane damage in higher plants exposed to low-temperature stress. Journal of plant physiology. 2008 Sep; 165(14):1483-90. doi: 10.1016/j.jplph.2006.03.020. [PMID: 18242766]
  • Patricia L Marconi, María A Alvarez, Sandra I Pitta-Alvarez. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production. Applied biochemistry and biotechnology. 2007 Jan; 136(1):63-75. doi: 10.1007/bf02685939. [PMID: 17416978]
  • Irène Hummel, Ivan Couée, Abdelhak El Amrani, Josette Martin-Tanguy, Françoise Hennion. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. Journal of experimental botany. 2002 Jun; 53(373):1463-73. doi: ". [PMID: 12021294]
  • Lixiong He, Kazuyoshi Nada, Yoshihisa Kasukabe, Shoji Tachibana. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant & cell physiology. 2002 Feb; 43(2):196-206. doi: 10.1093/pcp/pcf021. [PMID: 11867699]
  • W Shen, K Nada, S Tachibana. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant physiology. 2000 Sep; 124(1):431-9. doi: 10.1104/pp.124.1.431. [PMID: 10982456]
  • D Arndt, I Fichtner, E Nissen. Liposomes as carrier of methyl-GAG. Increased antitumor activity and reduced hypoglycemia in mice. Oncology. 1987; 44(4):257-62. doi: 10.1159/000226490. [PMID: 3614816]
  • R D Slocum, A W Galston. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues. Plant & cell physiology. 1985; 26(8):1519-26. doi: 10.1093/oxfordjournals.pcp.a077054. [PMID: 11539696]