4-bromo-N-(pyridin-2-ylmethyl)naphthalene-1-sulfonamide (BioDeep_00000844041)

   


代谢物信息卡片


4-bromo-N-(pyridin-2-ylmethyl)naphthalene-1-sulfonamide

化学式: C16H13BrN2O2S (375.9881058)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CC=C2Br)S(=O)(=O)NCC3=CC=CC=N3
InChI: InChI=1S/C16H13BrN2O2S/c17-15-8-9-16(14-7-2-1-6-13(14)15)22(20,21)19-11-12-5-3-4-10-18-12/h1-10,19H,11H2

描述信息

同义名列表

1 个代谢物同义名

4-bromo-N-(pyridin-2-ylmethyl)naphthalene-1-sulfonamide



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xi Chen, Chenchen Zhao, Ping Yun, Min Yu, Meixue Zhou, Zhong-Hua Chen, Sergey Shabala. Climate-resilient crops: Lessons from xerophytes. The Plant journal : for cell and molecular biology. 2023 Nov; ?(?):. doi: 10.1111/tpj.16549. [PMID: 37967090]
  • Shoukun Chen, Kunjie Li, Bin Tan, Yaning Wei, Haifeng Li. Identification of Pyrabactin resistance 1-like (PYL) genes in Brachypodium distachyon and functional characterization of BdPYL5. Journal of plant physiology. 2023 Apr; 283(?):153949. doi: 10.1016/j.jplph.2023.153949. [PMID: 36842335]
  • Wenbo Mi, Kaiqiang Liu, Guoling Liang, Zhifeng Jia, Xiang Ma, Zeliang Ju, Wenhui Liu. Genome-wide identification and characterization of ABA receptor pyrabactin resistance 1-like protein (PYL) family in oat. PeerJ. 2023; 11(?):e16181. doi: 10.7717/peerj.16181. [PMID: 37810776]
  • Yutao Wang, Chong Feng, Xiangtao Wu, Weihong Lu, Xiaoli Zhang, Xingliang Zhang. Potent ABA-independent activation of engineered PYL3. FEBS open bio. 2021 05; 11(5):1428-1439. doi: 10.1002/2211-5463.13151. [PMID: 33740827]
  • Rahul Singh, Vijay Kumar Bhardwaj, Jatin Sharma, Rituraj Purohit. Identification of novel and selective agonists for ABA receptor PYL3. Plant physiology and biochemistry : PPB. 2020 Sep; 154(?):387-395. doi: 10.1016/j.plaphy.2020.05.005. [PMID: 32629182]
  • Manish K Gupta, Vishakha Sharma, Sangram K Lenka, Viswanathan Chinnusamy. In silico study revealed major conserve architectures and novel features of pyrabactin binding to Oryza sativa ABA receptors compare to the Arabidopsis thaliana. Journal of biomolecular structure & dynamics. 2020 Jul; 38(11):3211-3224. doi: 10.1080/07391102.2019.1654922. [PMID: 31405333]
  • Seungsu Han, Yeongmok Lee, Eun Joo Park, Myung Ki Min, Yongsang Lee, Tae-Houn Kim, Beom-Gi Kim, Sangho Lee. Structural determinants for pyrabactin recognition in ABA receptors in Oryza sativa. Plant molecular biology. 2019 Jun; 100(3):319-333. doi: 10.1007/s11103-019-00862-6. [PMID: 30941543]
  • Javier A Miret, Sergi Munné-Bosch, Paul P Dijkwel. ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. Plant biotechnology journal. 2018 02; 16(2):530-544. doi: 10.1111/pbi.12793. [PMID: 28703416]
  • Aditya S Vaidya, Francis C Peterson, Dmitry Yarmolinsky, Ebe Merilo, Inge Verstraeten, Sang-Youl Park, Dezi Elzinga, Amita Kaundal, Jonathan Helander, Jorge Lozano-Juste, Masato Otani, Kevin Wu, Davin R Jensen, Hannes Kollist, Brian F Volkman, Sean R Cutler. A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS chemical biology. 2017 11; 12(11):2842-2848. doi: 10.1021/acschembio.7b00650. [PMID: 28949512]
  • Jingling Yu, Hejuan Li, Yajing Peng, Lei Yang, Fugeng Zhao, Sheng Luan, Wenzhi Lan. A survey of the pyrabactin resistance-like abscisic acid receptor gene family in poplar. Plant signaling & behavior. 2017 08; 12(8):e1356966. doi: 10.1080/15592324.2017.1356966. [PMID: 28816619]
  • Jorge González-Villagra, Leonid V Kurepin, Marjorie M Reyes-Díaz. Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. Planta. 2017 Aug; 246(2):299-312. doi: 10.1007/s00425-017-2711-y. [PMID: 28534253]
  • Javier A Miret, Sergi Munné-Bosch. Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food chemistry. 2016 Jul; 203(?):216-223. doi: 10.1016/j.foodchem.2016.02.046. [PMID: 26948608]
  • Tatjana Peskan-Berghöfer, Amaya Vilches-Barro, Teresa M Müller, Erich Glawischnig, Michael Reichelt, Jonathan Gershenzon, Thomas Rausch. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. The New phytologist. 2015 Nov; 208(3):873-86. doi: 10.1111/nph.13504. [PMID: 26075497]
  • Wenqiang Fan, Jia Li, Jia Jia, Fei Wang, Cuiling Cao, Jingjiang Hu, Zixin Mu. Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. Plant physiology and biochemistry : PPB. 2015 Sep; 94(?):28-34. doi: 10.1016/j.plaphy.2015.05.005. [PMID: 26000467]
  • Ha-Nul Lee, Kyeong-Hwan Lee, Cheol Soo Kim. Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochemical and biophysical research communications. 2015 Jul; 463(1-2):24-8. doi: 10.1016/j.bbrc.2015.05.010. [PMID: 25983319]
  • M Van Overtveldt, T S A Heugebaert, I Verstraeten, D Geelen, C V Stevens. Phosphonamide pyrabactin analogues as abscisic acid agonists. Organic & biomolecular chemistry. 2015 May; 13(18):5260-4. doi: 10.1039/c5ob00137d. [PMID: 25811608]
  • Yohei Takahashi, Yuta Ebisu, Toshinori Kinoshita, Michio Doi, Eiji Okuma, Yoshiyuki Murata, Ken-Ichiro Shimazaki. bHLH transcription factors that facilitate K⁺ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Science signaling. 2013 Jun; 6(280):ra48. doi: 10.1126/scisignal.2003760. [PMID: 23779086]
  • Laia Arrom, Sergi Munné-Bosch. Hormonal regulation of leaf senescence in Lilium. Journal of plant physiology. 2012 Oct; 169(15):1542-50. doi: 10.1016/j.jplph.2012.06.012. [PMID: 22854182]
  • Mallikarjuna Rao Puli, Agepati S Raghavendra. Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum. Journal of experimental botany. 2012 Feb; 63(3):1349-56. doi: 10.1093/jxb/err364. [PMID: 22131162]
  • Nobutaka Kitahata, Tadao Asami. Chemical biology of abscisic acid. Journal of plant research. 2011 Jul; 124(4):549-57. doi: 10.1007/s10265-011-0415-0. [PMID: 21461661]
  • Karsten Melcher, X Edward Zhou, H Eric Xu. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Current opinion in structural biology. 2010 Dec; 20(6):722-9. doi: 10.1016/j.sbi.2010.09.007. [PMID: 20951573]
  • ". Green with underappreciation. Nature structural & molecular biology. 2010 Sep; 17(9):1035. doi: 10.1038/nsmb0910-1035. [PMID: 20814425]
  • Sang-Youl Park, Pauline Fung, Noriyuki Nishimura, Davin R Jensen, Hiroaki Fujii, Yang Zhao, Shelley Lumba, Julia Santiago, Americo Rodrigues, Tsz-Fung F Chow, Simon E Alfred, Dario Bonetta, Ruth Finkelstein, Nicholas J Provart, Darrell Desveaux, Pedro L Rodriguez, Peter McCourt, Jian-Kang Zhu, Julian I Schroeder, Brian F Volkman, Sean R Cutler. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science (New York, N.Y.). 2009 May; 324(5930):1068-71. doi: 10.1126/science.1173041. [PMID: 19407142]
  • Yang Zhao, Tszfung F Chow, Rachel S Puckrin, Simon E Alfred, Albert K Korir, Cynthia K Larive, Sean R Cutler. Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. Nature chemical biology. 2007 Nov; 3(11):716-21. doi: 10.1038/nchembio.2007.32. [PMID: 17891152]