2-(Phosphonooxy)acrylate (BioDeep_00000843654)
代谢物信息卡片
化学式: C3H4O6P- (166.9745514)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C=C(C(=O)[O-])OP(=O)(O)O
InChI: InChI=1S/C3H5O6P/c1-2(3(4)5)9-10(6,7)8/h1H2,(H,4,5)(H2,6,7,8)/p-1
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
563 个相关的代谢反应过程信息。
Reactome(23)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + D-Fructose 1,6-bisphosphate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + D-Fructose 1,6-bisphosphate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ADP + Glc ⟶ AMP + G6P
- Glycolysis:
ADP + Glc ⟶ AMP + G6P
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Chorismate via Shikimate Pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Sialic acid metabolism:
ATP + ManNAc ⟶ ADP + ManNAc-6-P
BioCyc(0)
WikiPathways(0)
Plant Reactome(540)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
ATP + Glycerol ⟶ ADP + G3P
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Alexandra N Schoen, Alyssa M Weinrauch, Ian A Bouyoucos, Jason R Treberg, W Gary Anderson. Hormonal effects on glucose and ketone metabolism in a perfused liver of an elasmobranch, the North Pacific spiny dogfish, Squalus suckleyi.
General and comparative endocrinology.
2024 Jun; 352(?):114514. doi:
10.1016/j.ygcen.2024.114514
. [PMID: 38582175] - Masahiro Karikomi, Noriaki Katayama, Takashi Osanai. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption.
Plant molecular biology.
2024 May; 114(3):60. doi:
10.1007/s11103-023-01401-0
. [PMID: 38758412] - Chenran Wang, Maohua Huang, Yuning Lin, Yiming Zhang, Jinghua Pan, Chang Jiang, Minjing Cheng, Shenrong Li, Wenzhuo He, Zhengqiu Li, Zhengchao Tu, Jun Fan, Huhu Zeng, Jiahui Lin, Yongjin Wang, Nan Yao, Tongzheng Liu, Qi Qi, Xiangning Liu, Zhimin Zhang, Minfeng Chen, Liangping Xia, Dongmei Zhang, Wencai Ye. ENO2-derived phosphoenolpyruvate functions as an endogenous inhibitor of HDAC1 and confers resistance to antiangiogenic therapy.
Nature metabolism.
2023 Sep; ?(?):. doi:
10.1038/s42255-023-00883-y
. [PMID: 37667133] - Lilan Luo, Xiaofeng Cao. Nodule-specific energy sensors determine symbiotic nitrogen fixation by regulating phosphoenolpyruvate allocation.
Science China. Life sciences.
2023 03; 66(3):643-645. doi:
10.1007/s11427-022-2256-2
. [PMID: 36515862] - Ferrol I Rome, Gregory L Shobert, William C Voigt, David B Stagg, Patrycja Puchalska, Shawn C Burgess, Peter A Crawford, Curtis C Hughey. Loss of hepatic phosphoenolpyruvate carboxykinase 1 dysregulates metabolic responses to acute exercise but enhances adaptations to exercise training in mice.
American journal of physiology. Endocrinology and metabolism.
2023 01; 324(1):E9-E23. doi:
10.1152/ajpendo.00222.2022
. [PMID: 36351254] - Xiaolong Ke, Han Xiao, Yaqi Peng, Jing Wang, Qi Lv, Xuelu Wang. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state.
Science (New York, N.Y.).
2022 12; 378(6623):971-977. doi:
10.1126/science.abq8591
. [PMID: 36454840] - Shan Tang, Fei Peng, Qingqing Tang, Yunhao Liu, Hui Xia, Xuan Yao, Shaoping Lu, Liang Guo. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus.
Journal of advanced research.
2022 12; 42(?):29-40. doi:
10.1016/j.jare.2022.07.008
. [PMID: 35907629] - Gokul Sudhakaran, Ravi Rajesh, Ajay Guru, B Haridevamuthu, Raghul Murugan, Nattamai Bhuvanesh, Mohammad Ahmad Wadaan, Shalid Mahboob, Annie Juliet, Pushparathinam Gopinath, Jesu Arockiaraj. Deacetylated nimbin analog N2 fortifies alloxan-induced pancreatic β-cell damage in insulin-resistant zebrafish larvae by upregulating phosphoenolpyruvate carboxykinase (PEPCK) and insulin levels.
Toxicology and applied pharmacology.
2022 11; 454(?):116229. doi:
10.1016/j.taap.2022.116229
. [PMID: 36089001] - Xu-Cong Lv, Qi Wu, Yu-Jie Yuan, Lu Li, Wei-Ling Guo, Xiao-Bin Lin, Zi-Rui Huang, Ping-Fan Rao, Lian-Zhong Ai, Li Ni. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet.
International journal of biological macromolecules.
2022 Oct; 219(?):964-979. doi:
10.1016/j.ijbiomac.2022.07.211
. [PMID: 35940431] - Lirong Yao, Juncheng Wang, Ke Yang, Na Hu, Baochun Li, Yaxiong Meng, Xiaole Ma, Erjing Si, Xunwu Shang, Huajun Wang. Proteomic analysis reveals molecular mechanism of Cd2+ tolerance in the leaves of halophyte Halogeton glomeratus.
Journal of proteomics.
2022 Oct; 269(?):104703. doi:
10.1016/j.jprot.2022.104703
. [PMID: 36084920] - Jiangwei Xiao, Xiang Li, Zongbao Zhou, Shuwen Guan, Lingjian Zhuo, Botao Gao. Development of an in vitro insulin resistance dissociated model of hepatic steatosis by co-culture system.
Bioscience trends.
2022 Sep; 16(4):257-266. doi:
10.5582/bst.2022.01242
. [PMID: 35965099] - Surabhi Bangarbale, Blythe D Shepard, Shivani Bansal, Meth M Jayatilake, Ryan Kurtz, Moshe Levi, Carolyn M Ecelbarger. Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration.
Biomolecules.
2022 08; 12(9):. doi:
10.3390/biom12091176
. [PMID: 36139016] - Stephanie Nguyen, Blagojce Jovcevski, Jia Q Truong, Tara L Pukala, John B Bruning. A structural model of the human plasminogen and Aspergillus fumigatus enolase complex.
Proteins.
2022 08; 90(8):1509-1520. doi:
10.1002/prot.26331
. [PMID: 35247004] - Dexing Jiang, Haizi Zhang, Hui Cai, Zhiping Gao, Guoxiang Chen. Overexpression of ZmPCK2, a phosphoenolpyruvate carboxykinase gene from maize confers enhanced tolerance to water deficit stress in rice.
Plant science : an international journal of experimental plant biology.
2022 Apr; 317(?):111195. doi:
10.1016/j.plantsci.2022.111195
. [PMID: 35193744] - W W Zhang, R Xue, T Y Mi, X M Shen, J C Li, S Li, Y Zhang, Y Li, L X Wang, X L Yin, H L Wang, Y Z Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation.
Biochemical and biophysical research communications.
2022 01; 586(?):121-128. doi:
10.1016/j.bbrc.2021.11.073
. [PMID: 34839190] - Asmaa Elnagar, Khalifa El-Dawy, Hussein I El-Belbasi, Ibrahim F Rehan, Hamdy Embark, Zeinab Al-Amgad, Obeid Shanab, Elsayed Mickdam, Gaber E Batiha, Salman Alamery, Samer S Fouad, Simona Cavalu, Mohammed Youssef. Ameliorative Effect of Oxytocin on FBN1 and PEPCK Gene Expression, and Behavioral Patterns in Rats' Obesity-Induced Diabetes.
Frontiers in public health.
2022; 10(?):777129. doi:
10.3389/fpubh.2022.777129
. [PMID: 35462799] - Iliana López-Soldado, Joan J Guinovart, Jordi Duran. Hepatic overexpression of protein targeting to glycogen attenuates obesity and improves hyperglycemia in db/db mice.
Frontiers in endocrinology.
2022; 13(?):969924. doi:
10.3389/fendo.2022.969924
. [PMID: 36157460] - Xin-Cheng Liu, Xia-Hui Lin, Sheng-Chao Liu, Chang-Qing Zhu, Donald Grierson, Shao-Jia Li, Kun-Song Chen. The effect of NH4+ on phosphoenolpyruvate carboxykinase gene expression, metabolic flux and citrate content of citrus juice sacs.
Plant physiology and biochemistry : PPB.
2021 Oct; 167(?):123-131. doi:
10.1016/j.plaphy.2021.07.041
. [PMID: 34352515] - Shoki Ito, Takumi Hakamada, Tatsumi Ogino, Takashi Osanai. Reconstitution of oxaloacetate metabolism in the tricarboxylic acid cycle in Synechocystis sp. PCC 6803: discovery of important factors that directly affect the conversion of oxaloacetate.
The Plant journal : for cell and molecular biology.
2021 03; 105(6):1449-1458. doi:
10.1111/tpj.15120
. [PMID: 33280178] - Bruno S do Amaral, Larissa R G da Silva, Alessandra L Valverde, Lorena R F de Sousa, Richele P Severino, Dulce H F de Souza, Quezia B Cass. Phosphoenolpyruvate carboxykinase from T. cruzi magnetic beads affinity-based screening assays on crude plant extracts from Brazilian Cerrado.
Journal of pharmaceutical and biomedical analysis.
2021 Jan; 193(?):113710. doi:
10.1016/j.jpba.2020.113710
. [PMID: 33166842] - Rosario A Muñoz-Clares, Lilian González-Segura, Javier Andrés Juárez-Díaz, Carlos Mújica-Jiménez. Structural and biochemical evidence of the glucose 6-phosphate-allosteric site of maize C4-phosphoenolpyruvate carboxylase: its importance in the overall enzyme kinetics.
The Biochemical journal.
2020 06; 477(11):2095-2114. doi:
10.1042/bcj20200304
. [PMID: 32459324] - Brendan M O'Leary, Glenda Guek Khim Oh, Chun Pong Lee, A Harvey Millar. Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation.
The Plant cell.
2020 03; 32(3):666-682. doi:
10.1105/tpc.19.00157
. [PMID: 31888967] - Feroza K Choudhury, Amith R Devireddy, Rajeev K Azad, Vladimir Shulaev, Ron Mittler. Rapid Accumulation of Glutathione During Light Stress in Arabidopsis.
Plant & cell physiology.
2018 Sep; 59(9):1817-1826. doi:
10.1093/pcp/pcy101
. [PMID: 29800382] - Jingbo Li, Qiong Peng, Heping Han, Alex Nyporko, Tymofii Kulynych, Qin Yu, Stephen Powles. Glyphosate Resistance in Tridax procumbens via a Novel EPSPS Thr-102-Ser Substitution.
Journal of agricultural and food chemistry.
2018 Aug; 66(30):7880-7888. doi:
10.1021/acs.jafc.8b01651
. [PMID: 29985610] - M A Troncoso-Ponce, J Rivoal, S Dorion, R Sánchez, M Venegas-Calerón, A J Moreno-Pérez, S Baud, R Garcés, E Martínez-Force. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development.
Plant science : an international journal of experimental plant biology.
2018 Jul; 272(?):117-130. doi:
10.1016/j.plantsci.2018.04.007
. [PMID: 29807582] - Franziska Fichtner, Francois F Barbier, Regina Feil, Mutsumi Watanabe, Maria Grazia Annunziata, Tinashe G Chabikwa, Rainer Höfgen, Mark Stitt, Christine A Beveridge, John E Lunn. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).
The Plant journal : for cell and molecular biology.
2017 Nov; 92(4):611-623. doi:
10.1111/tpj.13705
. [PMID: 28869799] - Alexander Minges, Astrid Höppner, Georg Groth. Trapped intermediate state of plant pyruvate phosphate dikinase indicates substeps in catalytic swiveling domain mechanism.
Protein science : a publication of the Protein Society.
2017 Aug; 26(8):1667-1673. doi:
10.1002/pro.3184
. [PMID: 28470715] - Franco Moritz, Moritz Kaling, Jörg-Peter Schnitzler, Philippe Schmitt-Kopplin. Characterization of poplar metabotypes via mass difference enrichment analysis.
Plant, cell & environment.
2017 Jul; 40(7):1057-1073. doi:
10.1111/pce.12878
. [PMID: 27943315] - Adam J Coggins, Matthew W Powner. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis.
Nature chemistry.
2017 04; 9(4):310-317. doi:
10.1038/nchem.2624
. [PMID: 28338685] - Alexander Minges, Daniel Ciupka, Christian Winkler, Astrid Höppner, Holger Gohlke, Georg Groth. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase.
Scientific reports.
2017 03; 7(?):45389. doi:
10.1038/srep45389
. [PMID: 28358005] - Lucia Abela, Ronen Spiegel, Lisa M Crowther, Andrea Klein, Katharina Steindl, Sorina Mihaela Papuc, Pascal Joset, Yoav Zehavi, Anita Rauch, Barbara Plecko, Thomas Luke Simmons. Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency.
PloS one.
2017; 12(5):e0176363. doi:
10.1371/journal.pone.0176363
. [PMID: 28463998] - Xiaoqun Nie, Bin Yang, Lei Zhang, Yang Gu, Sheng Yang, Weihong Jiang, Chen Yang. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
Molecular microbiology.
2016 Apr; 100(2):289-302. doi:
10.1111/mmi.13316
. [PMID: 26691835] - Yue Zhen Li, Dan Wang, Xue Ying Feng, Jian Jiao, Wen Xin Chen, Chang Fu Tian. Genetic Analysis Reveals the Essential Role of Nitrogen Phosphotransferase System Components in Sinorhizobium fredii CCBAU 45436 Symbioses with Soybean and Pigeonpea Plants.
Applied and environmental microbiology.
2016 02; 82(4):1305-15. doi:
10.1128/aem.03454-15
. [PMID: 26682851] - Eunsook S Jin, A Dean Sherry, Craig R Malloy. Lactate Contributes to Glyceroneogenesis and Glyconeogenesis in Skeletal Muscle by Reversal of Pyruvate Kinase.
The Journal of biological chemistry.
2015 Dec; 290(51):30486-97. doi:
10.1074/jbc.m115.689174
. [PMID: 26491014] - Robert P Walker, Alberto Battistelli, Stefano Moscatello, László Técsi, Richard C Leegood, Franco Famiani. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp.
Plant physiology and biochemistry : PPB.
2015 Dec; 97(?):62-9. doi:
10.1016/j.plaphy.2015.09.004
. [PMID: 26432988] - Nuria K Koteyeva, Elena V Voznesenskaya, Gerald E Edwards. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
Plant science : an international journal of experimental plant biology.
2015 Jun; 235(?):70-80. doi:
10.1016/j.plantsci.2015.03.004
. [PMID: 25900567] - Rafia Mir, Shais Jallu, T P Singh. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.
Critical reviews in microbiology.
2015 Jun; 41(2):172-89. doi:
10.3109/1040841x.2013.813901
. [PMID: 23919299] - Evgenia L Auslender, Sonia Dorion, Sébastien Dumont, Jean Rivoal. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase.
Protein expression and purification.
2015 Jun; 110(?):7-13. doi:
10.1016/j.pep.2014.12.015
. [PMID: 25573389] - Vincenzo Venditti, Vitali Tugarinov, Charles D Schwieters, Alexander Grishaev, G Marius Clore. Large interdomain rearrangement triggered by suppression of micro- to millisecond dynamics in bacterial Enzyme I.
Nature communications.
2015 Jan; 6(?):5960. doi:
10.1038/ncomms6960
. [PMID: 25581904] - Jan de Weille, Christine Fabre, Camille Gaven, Norbert Bakalara. Similar pyruvate kinase modifications in glioblastoma cells by 7β-hydroxycholesterol and glutamine withdrawal.
Biochemical pharmacology.
2013 Jul; 86(1):161-7. doi:
10.1016/j.bcp.2013.03.012
. [PMID: 23537700] - A Etienne, M Génard, P Lobit, D Mbeguié-A-Mbéguié, C Bugaud. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells.
Journal of experimental botany.
2013 Apr; 64(6):1451-69. doi:
10.1093/jxb/ert035
. [PMID: 23408829] - Pierre Dizengremel, Marie-Noëlle Vaultier, Didier Le Thiec, Mireille Cabané, Matthieu Bagard, Dominique Gérant, Joëlle Gérard, Ata Allah Dghim, Nicolas Richet, Dany Afif, Jean-Claude Pireaux, Marie-Paule Hasenfratz-Sauder, Yves Jolivet. Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress.
The New phytologist.
2012 Aug; 195(3):512-517. doi:
10.1111/j.1469-8137.2012.04211.x
. [PMID: 22686461] - J Musembi Mutuku, Akihiro Nose. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
Plant & cell physiology.
2012 Jun; 53(6):1017-32. doi:
10.1093/pcp/pcs047
. [PMID: 22492233] - Laura Marroquí, Thiago M Batista, Alejandro Gonzalez, Elaine Vieira, Alex Rafacho, Simone J Colleta, Sebastião R Taboga, Antonio C Boschero, Angel Nadal, Everardo M Carneiro, Ivan Quesada. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition.
Endocrinology.
2012 Apr; 153(4):1663-72. doi:
10.1210/en.2011-1623
. [PMID: 22334714] - Shaowei Wei, Yin Li. [Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2011 Dec; 27(12):1702-10. doi:
. [PMID: 22506410]
- Guillaume Tcherkez, Aline Mahé, Edouard Boex-Fontvieille, Elisabeth Gout, Florence Guérard, Richard Bligny. Experimental evidence of phosphoenolpyruvate resynthesis from pyruvate in illuminated leaves.
Plant physiology.
2011 Sep; 157(1):86-95. doi:
10.1104/pp.111.180711
. [PMID: 21730197] - Mariana Martín, Sebastián Pablo Rius, Florencio Esteban Podestá. Two phosphoenolpyruvate carboxykinases coexist in the Crassulacean Acid Metabolism plant Ananas comosus. Isolation and characterization of the smaller 65 kDa form.
Plant physiology and biochemistry : PPB.
2011 Jun; 49(6):646-53. doi:
10.1016/j.plaphy.2011.02.015
. [PMID: 21398135] - Chris J Chastain, Christopher J Failing, Lumu Manandhar, Margaret A Zimmerman, Mitchell M Lakner, Tony H T Nguyen. Functional evolution of C(4) pyruvate, orthophosphate dikinase.
Journal of experimental botany.
2011 May; 62(9):3083-91. doi:
10.1093/jxb/err058
. [PMID: 21414960] - Katarzyna Winiarska, Michal Grabowski, Maciej K Rogacki. Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin.
Chemico-biological interactions.
2011 Jan; 189(1-2):119-26. doi:
10.1016/j.cbi.2010.09.033
. [PMID: 20934416] - J Ching Lee, Petr Herman. Structural and functional energetic linkages in allosteric regulation of muscle pyruvate kinase.
Methods in enzymology.
2011; 488(?):185-217. doi:
10.1016/b978-0-12-381268-1.00008-2
. [PMID: 21195229] - Veena Prabhakar, Tanja Löttgert, Stefan Geimer, Peter Dörmann, Stephan Krüger, Vinod Vijayakumar, Lukas Schreiber, Cornelia Göbel, Kirstin Feussner, Ivo Feussner, Kay Marin, Pia Staehr, Kirsten Bell, Ulf-Ingo Flügge, Rainer E Häusler. Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana.
The Plant cell.
2010 Aug; 22(8):2594-617. doi:
10.1105/tpc.109.073171
. [PMID: 20798327] - Lars M Voll, Mohammad R Hajirezaei, Cäcilia Czogalla-Peter, Wolfgang Lein, Mark Stitt, Uwe Sonnewald, Frederik Börnke. Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants.
The New phytologist.
2009 Nov; 184(3):607-618. doi:
10.1111/j.1469-8137.2009.02998.x
. [PMID: 19694966] - Jie Shen, Xiaozhi Ren, Rui Cao, Jun Liu, Zhizhong Gong. Transcriptional gene silencing mediated by a plastid inner envelope phosphoenolpyruvate/phosphate translocator CUE1 in Arabidopsis.
Plant physiology.
2009 Aug; 150(4):1990-6. doi:
10.1104/pp.109.139626
. [PMID: 19515789] - Alena Sebkova, Daniela Karasova, Magdalena Crhanova, Eva Budinska, Ivan Rychlik. aro mutations in Salmonella enterica cause defects in cell wall and outer membrane integrity.
Journal of bacteriology.
2008 May; 190(9):3155-60. doi:
10.1128/jb.00053-08
. [PMID: 18310348] - Louis Leitao, Emilien Delacôte, Pierre Dizengremel, Didier Le Thiec, Jean-Philippe Biolley. Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C4 plant.
Environmental pollution (Barking, Essex : 1987).
2007 Mar; 146(1):5-8. doi:
10.1016/j.envpol.2006.05.019
. [PMID: 17011686] - O Ueno, N Sentoku. Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies.
Plant, cell & environment.
2006 Feb; 29(2):257-68. doi:
10.1111/j.1365-3040.2005.01418.x
. [PMID: 17080641] - Eunsook S Jin, Shawn C Burgess, Matthew E Merritt, A Dean Sherry, Craig R Malloy. Differing mechanisms of hepatic glucose overproduction in triiodothyronine-treated rats vs. Zucker diabetic fatty rats by NMR analysis of plasma glucose.
American journal of physiology. Endocrinology and metabolism.
2005 Apr; 288(4):E654-62. doi:
10.1152/ajpendo.00365.2004
. [PMID: 15562253] - Tsugumi Nakanishi, Toru Nakatsu, Makoto Matsuoka, Kanzo Sakata, Hiroaki Kato. Crystal structures of pyruvate phosphate dikinase from maize revealed an alternative conformation in the swiveling-domain motion.
Biochemistry.
2005 Feb; 44(4):1136-44. doi:
10.1021/bi0484522
. [PMID: 15667207] - Li-Song Chen, Akihiro Nose. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.
Annals of botany.
2004 Sep; 94(3):449-55. doi:
10.1093/aob/mch165
. [PMID: 15277250] - T N Rosenstiel, A L Ebbets, W C Khatri, R Fall, R K Monson. Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate.
Plant biology (Stuttgart, Germany).
2004 Jan; 6(1):12-21. doi:
10.1055/s-2003-44722
. [PMID: 15095130] - Haruyo Okunuki, Hiroshi Akiyama, Reiko Teshima, Akihiro Hino, Yukihiro Goda, Jun-ichi Sawada, Masatake Toyoda, Tamio Maitani. Determination of enzymatic activity of 5-enolpyruvylshikimate-3-phosphate synthase by LC/MS.
Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan.
2003 Apr; 44(2):77-82. doi:
10.3358/shokueishi.44.77
. [PMID: 12846153] - Silke Knappe, Ulf-Ingo Flügge, Karsten Fischer. Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site.
Plant physiology.
2003 Mar; 131(3):1178-90. doi:
10.1104/pp.016519
. [PMID: 12644669] - Richard E Goldstein, Luciano Rossetti, Brett A J Palmer, Rong Liu, Duna Massillon, Melanie Scott, Doss Neal, Phillip Williams, Benjamin Peeler, Alan D Cherrington. Effects of fasting and glucocorticoids on hepatic gluconeogenesis assessed using two independent methods in vivo.
American journal of physiology. Endocrinology and metabolism.
2002 Nov; 283(5):E946-57. doi:
10.1152/ajpendo.00320.2002
. [PMID: 12376321] - Karsten Fischer, Andreas Weber. Transport of carbon in non-green plastids.
Trends in plant science.
2002 Aug; 7(8):345-51. doi:
10.1016/s1360-1385(02)02291-4
. [PMID: 12167329] - Rowan F Sage. C(4) photosynthesis in terrestrial plants does not require Kranz anatomy.
Trends in plant science.
2002 Jul; 7(7):283-5. doi:
10.1016/s1360-1385(02)02293-8
. [PMID: 12119158] - Chris J Chastain, Jason P Fries, Julie A Vogel, Christa L Randklev, Adam P Vossen, Sharon K Dittmer, Erin E Watkins, Lucas J Fiedler, Sarah A Wacker, Katherine C Meinhover, Gautam Sarath, Raymond Chollet. Pyruvate,orthophosphate dikinase in leaves and chloroplasts of C(3) plants undergoes light-/dark-induced reversible phosphorylation.
Plant physiology.
2002 Apr; 128(4):1368-78. doi:
10.1104/pp.010806
. [PMID: 11950985] - Li-Song Chen, Qin Lin, Akihiro Nose. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata.
Journal of experimental botany.
2002 Feb; 53(367):341-50. doi:
10.1093/jexbot/53.367.341
. [PMID: 11807138] - Li-mei Chen, Takuma Omiya, Shingo Hata, Katsura Izui. Molecular characterization of a phosphoenolpyruvate carboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus with unusual allosteric properties.
Plant & cell physiology.
2002 Feb; 43(2):159-69. doi:
10.1093/pcp/pcf019
. [PMID: 11867695] - Robert P Walker, Zhi-Hui Chen, Richard M Acheson, Richard C Leegood. Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C4 plant Guinea grass.
Plant physiology.
2002 Jan; 128(1):165-72. doi:
"
. [PMID: 11788762] - J G Jones, M A Solomon, S M Cole, A D Sherry, C R Malloy. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
American journal of physiology. Endocrinology and metabolism.
2001 Oct; 281(4):E848-56. doi:
10.1152/ajpendo.2001.281.4.e848
. [PMID: 11551863] - D S Edgerton, S Cardin, M Emshwiller, D Neal, V Chandramouli, W C Schumann, B R Landau, L Rossetti, A D Cherrington. Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism.
Diabetes.
2001 Aug; 50(8):1872-82. doi:
10.2337/diabetes.50.8.1872
. [PMID: 11473051] - H L Jenner, B M Winning, A H Millar, K L Tomlinson, C J Leaver, S A Hill. NAD malic enzyme and the control of carbohydrate metabolism in potato tubers.
Plant physiology.
2001 Jul; 126(3):1139-49. doi:
10.1104/pp.126.3.1139
. [PMID: 11457964] - J Zhang, L Yu, Q Fu, J Gao, Y Xie, J Chen, P Zhang, Q Liu, S Zhao. Mouse phosphoglycerate mutase M and B isozymes: cDNA cloning, enzyme activity assay and mapping.
Gene.
2001 Feb; 264(2):273-9. doi:
10.1016/s0378-1119(00)00597-7
. [PMID: 11250083] - L Espen, M Dell'Orto, P De Nisi, G Zocchi. Metabolic responses in cucumber (Cucumis sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in-vivo study.
Planta.
2000 May; 210(6):985-92. doi:
10.1007/s004250050707
. [PMID: 10872232] - B Ivanov, G Edwards. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
Planta.
2000 Apr; 210(5):765-74. doi:
10.1007/s004250050678
. [PMID: 10805448] - B Gonzalez, A de Graaf, M Renaud, H Sahm. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift.
Yeast (Chichester, England).
2000 Apr; 16(6):483-97. doi:
10.1002/(sici)1097-0061(200004)16:6<483::aid-yea542>3.0.co;2-e
. [PMID: 10790685] - S J Streatfield, A Weber, E A Kinsman, R E Häusler, J Li, D Post-Beittenmiller, W M Kaiser, K A Pyke, U I Flügge, J Chory. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.
The Plant cell.
1999 Sep; 11(9):1609-22. doi:
10.1105/tpc.11.9.1609
. [PMID: 10488230] - W P Dubinsky, O Mayorga-Wark, S G Schultz. Colocalization of glycolytic enzyme activity and KATP channels in basolateral membrane of Necturus enterocytes.
The American journal of physiology.
1998 12; 275(6):C1653-9. doi:
10.1152/ajpcell.1998.275.6.c1653
. [PMID: 9843727] - M D Jeyasingham, G M Carlson. Evaluation of phosphoenolpyruvate as a phosphoryl group donor for phosphoproteins in skeletal muscle.
Archives of biochemistry and biophysics.
1998 Sep; 357(2):285-92. doi:
10.1006/abbi.1998.0795
. [PMID: 9735169] - C Mújica-Jiménez, A Castellanos-Martínez, R A Muñoz-Clares. Studies of the allosteric properties of maize leaf phosphoenolpyruvate carboxylase with the phosphoenolpyruvate analog phosphomycin as activator.
Biochimica et biophysica acta.
1998 Jul; 1386(1):132-44. doi:
10.1016/s0167-4838(98)00093-4
. [PMID: 9675261] - A Tovar-Méndez, R Rodríguez-Sotres, D M López-Valentín, R A Muñoz-Clares. Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays. Effects of the activators glucose 6-phosphate and glycine.
The Biochemical journal.
1998 Jun; 332 ( Pt 3)(?):633-42. doi:
10.1042/bj3320633
. [PMID: 9620864] - R H Friesen, J C Lee. The negative dominant effects of T340M mutation on mammalian pyruvate kinase.
The Journal of biological chemistry.
1998 Jun; 273(24):14772-9. doi:
10.1074/jbc.273.24.14772
. [PMID: 9614077] - S Saiki, K Yamaguchi, K Chijiiwa, S Shimizu, N Hamasaki, M Tanaka. Phosphoenolpyruvate prevents the decline in hepatic ATP and energy charge after ischemia and reperfusion injury in rats.
The Journal of surgical research.
1997 Nov; 73(1):59-65. doi:
10.1006/jsre.1997.5177
. [PMID: 9441794] - K Fischer, B Kammerer, M Gutensohn, B Arbinger, A Weber, R E Häusler, U I Flügge. A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter.
The Plant cell.
1997 Mar; 9(3):453-62. doi:
10.1105/tpc.9.3.453
. [PMID: 9090886] - N Hamasaki, K Okubo. Band 3 protein: physiology, function and structure.
Cellular and molecular biology (Noisy-le-Grand, France).
1996 Nov; 42(7):1025-39. doi:
NULL
. [PMID: 8960778] - N Torres, H Bourges, A R Tovar. [Regulation of gene expression by nutrients].
Archivos latinoamericanos de nutricion.
1996 Jun; 46(2):89-96. doi:
"
. [PMID: 9239284] - G Farrar, W W Farrar. Purification and properties of the pyruvate kinase isozyme M1 from the pig brain.
The international journal of biochemistry & cell biology.
1995 Nov; 27(11):1145-51. doi:
10.1016/1357-2725(95)00090-c
. [PMID: 7584599] - Y Fukumura, S Tajima, S Oshitani, Y Ushijima, I Kobayashi, F Hara, S Yamamoto, M Yabuuchi. Fully enzymatic method for determining 1,5-anhydro-D-glucitol in serum.
Clinical chemistry.
1994 Nov; 40(11 Pt 1):2013-6. doi:
. [PMID: 7955370]
- K Fischer, B Arbinger, B Kammerer, C Busch, S Brink, H Wallmeier, N Sauer, C Eckerskorn, U I Flügge. Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3- and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate.
The Plant journal : for cell and molecular biology.
1994 Feb; 5(2):215-26. doi:
10.1046/j.1365-313x.1994.05020215.x
. [PMID: 8148878] - S C Dreskin, D E Kuhn, Y Huang. Phosphoenolpyruvate and creatine phosphate augment ATP and magnesium-dependent, Fc epsilon RI-mediated activation of phospholipase C in RBL cell ghosts.
Journal of immunology (Baltimore, Md. : 1950).
1993 Sep; 151(6):3199-205. doi:
. [PMID: 7690796]
- C Beyer. Creatine measurement in serum and urine with an automated enzymatic method.
Clinical chemistry.
1993 Aug; 39(8):1613-9. doi:
NULL
. [PMID: 8353946] - T Matsumoto, K Takahashi, S Kubo, M Haraoka, Y Mizunoe, M Tanaka, N Ogata, S Naito, J Kumazawa, Y Watanabe. Suppression of chemotactic activity of neutrophils in hyperosmotic conditions comparable to the renal medulla: partial preservation by phosphoenolpyruvate.
Urologia internationalis.
1993; 50(1):1-5. doi:
10.1159/000282438
. [PMID: 8434419] - M J MacDonald, D I McKenzie, T M Walker, J H Kaysen. Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets.
Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.
1992 Apr; 24(4):158-60. doi:
10.1055/s-2007-1003284
. [PMID: 1601389] - R Lopez-Escalera, X B Li, R T Szerencsei, P P Schnetkamp. Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods.
Biochemistry.
1991 Sep; 30(37):8970-6. doi:
10.1021/bi00101a009
. [PMID: 1892814] - T Matsumoto, P van der Auwera, Y Watanabe, M Tanaka, N Ogata, S Naito, J Kumazawa. Neutrophil function in hyperosmotic NaCl is preserved by phosphoenol pyruvate.
Urological research.
1991; 19(4):223-7. doi:
10.1007/bf00305299
. [PMID: 1656579] - C R Meyer, P Rustin, M K Black, R T Wedding. The influence of pH on substrate form specificity of phosphoenolpyruvate carboxylase purified from Crassula argentea.
Archives of biochemistry and biophysics.
1990 May; 278(2):365-72. doi:
10.1016/0003-9861(90)90272-z
. [PMID: 2327793] - C R Meyer, P Rustin, R T Wedding. A kinetic study of the effects of phosphate and organic phosphates on the activity of phosphoenolpyruvate carboxylase from Crassula argentea.
Archives of biochemistry and biophysics.
1989 May; 271(1):84-97. doi:
10.1016/0003-9861(89)90258-0
. [PMID: 2712576] - P Satabin, B Bois-Joyeux, M Chanez, C Y Guezennec, J Peret. Effects of long-term feeding of high-protein or high-fat diets on the response to exercise in the rat.
European journal of applied physiology and occupational physiology.
1989; 58(6):583-90. doi:
10.1007/bf00418503
. [PMID: 2731529] - R K Khazanchi, K R Knight, M F Angel, W C Pederson, S A Coe, B M O'Brien. Effect of phosphoenolpyruvate and adenosine triphosphate on rabbit skeletal muscle after ischaemia: preliminary biochemical study.
Microsurgery.
1989; 10(1):8-14. doi:
10.1002/micr.1920100104
. [PMID: 2725259]