L-Gulonate (BioDeep_00000840644)
代谢物信息卡片
化学式: C6H11O7- (195.0504756)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 66.67%
分子结构信息
SMILES: C(C(C(C(C(C(=O)[O-])O)O)O)O)O
InChI: InChI=1S/C6H12O7/c7-1-2(8)3(9)4(10)5(11)6(12)13/h2-5,7-11H,1H2,(H,12,13)/p-1/t2-,3+,4-,5-/m0/s1
数据库引用编号
分类词条
相关代谢途径
代谢反应
21 个相关的代谢反应过程信息。
Reactome(10)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Formation of xylulose-5-phosphate:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
BioCyc(10)
- L-gulonate degradation:
L-gulonate + NAD+ ⟶ D-fructuronate + H+ + NADH
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- ascorbate biosynthesis:
L-gulonate ⟶ H2O + L-gulono-1,4-lactone
- L-ascorbate biosynthesis IV:
L-gulono-1,4-lactone + O2 ⟶ L-xylo-hex-3-ulono-1,4-lactone + hydrogen peroxide
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- L-ascorbate biosynthesis IV:
H2O + L-gulono-1,4-lactone ⟶ H+ + L-gulonate
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- L-ascorbate biosynthesis VI:
L-gulonate + NADP+ ⟶ D-glucuronate + H+ + NADPH
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
- L-ascorbate biosynthesis IV:
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(1)
- L-ascorbate biosynthesis VI (plants, myo-inositol pathway):
L-gulonate + NADP+ ⟶ aldehydo-D-glucuronate + H+ + NADPH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Michelle R Denburg, Yunwen Xu, Alison G Abraham, Josef Coresh, Jingsha Chen, Morgan E Grams, Harold I Feldman, Paul L Kimmel, Casey M Rebholz, Eugene P Rhee, Ramachandran S Vasan, Bradley A Warady, Susan L Furth. Metabolite Biomarkers of CKD Progression in Children.
Clinical journal of the American Society of Nephrology : CJASN.
2021 08; 16(8):1178-1189. doi:
10.2215/cjn.00220121
. [PMID: 34362785] - Yong Jia, Crista A Burbidge, Crystal Sweetman, Emi Schutz, Kathy Soole, Colin Jenkins, Robert D Hancock, John B Bruning, Christopher M Ford. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera.
The Journal of biological chemistry.
2019 11; 294(44):15932-15946. doi:
10.1074/jbc.ra119.010196
. [PMID: 31488549] - Nelly Aranibar, Vasanthi Bhaskaran, Karl-Heinz Ott, Jeff Vassallo, David Nelson, Lloyd Lecureux, Lei Gong, Steve Stryker, Lois Lehman-McKeeman. Modulation of ascorbic acid metabolism by cytochrome P450 induction revealed by metabonomics and transcriptional profiling.
Magnetic resonance in chemistry : MRC.
2009 Dec; 47 Suppl 1(?):S12-9. doi:
10.1002/mrc.2503
. [PMID: 19768707] - Adaucto B Pereira-Netto, Ute Roessner, Shozo Fujioka, Antony Bacic, Tadao Asami, Shigeo Yoshida, Steven D Clouse. Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock.
Tree physiology.
2009 Apr; 29(4):607-20. doi:
10.1093/treephys/tpn052
. [PMID: 19203977] - B Mohamed Khadeer Ahamed, Venkatarangaiah Krishna, Kumaraswamy H Malleshappa. In vivo wound healing activity of the methanolic extract and its isolated constituent, gulonic acid gamma-lactone, obtained from Grewia tiliaefolia.
Planta medica.
2009 Apr; 75(5):478-82. doi:
10.1055/s-0029-1185315
. [PMID: 19219758] - Consuelo Sánchez-Brunete, Beatriz Albero, Germán Martín, José L Tadeo. Determination of pesticide residues by GC-MS using analyte protectants to counteract the matrix effect.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2005 Nov; 21(11):1291-6. doi:
10.2116/analsci.21.1291
. [PMID: 16317896] - G Moeckel, J Hallbach, W G Guder. Purification of human and rat kidney aldose reductase.
Enzyme & protein.
1994 199; 48(1):45-50. doi:
10.1159/000474968
. [PMID: 7787970] - A K Daly, T J Mantle. The kinetic mechanism of the major form of ox kidney aldehyde reductase with D-glucuronic acid.
The Biochemical journal.
1982 Aug; 205(2):381-8. doi:
10.1042/bj2050381
. [PMID: 6814425] - A Warrander, R H Waring. An improved method for gas chromatographic determination of urinary xylitol and glucuronic, glucaric gulonic and ascorbic acids, with their values in the rat, rabbit, guinea-pig and marmoset.
Xenobiotica; the fate of foreign compounds in biological systems.
1978 Oct; 8(10):605-9. doi:
10.3109/00498257809069572
. [PMID: 102085] - J J BURNS, J KANFER, G ASHWELL. Formation of L-xylulose from L-gulonic acid in rat kidney.
Biochimica et biophysica acta.
1959 Aug; 34(?):464-9. doi:
10.1016/0006-3002(59)90299-9
. [PMID: 13806255]