CFTRinh-172 (BioDeep_00000835457)

   


代谢物信息卡片


CFTR(inh)-172

化学式: C18H10F3NO3S2 (409.00541860000004)
中文名称: 5-[(4-羧基苯基)亚甲基]-2-硫氧-3- [(3-三氟甲基)苯基-4-噻唑烷酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=CC(=C1)N2C(=O)C(=CC3=CC=C(C=C3)C(=O)O)SC2=S)C(F)(F)F
InChI: InChI=1S/C18H10F3NO3S2/c19-18(20,21)12-2-1-3-13(9-12)22-15(23)14(27-17(22)26)8-10-4-6-11(7-5-10)16(24)25/h1-9H,(H,24,25)

描述信息

同义名列表

2 个代谢物同义名

CFTR(inh)-172; CFTRinh-172



数据库引用编号

3 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Dawood Khan, Ryan Kelsey, Rashmi R Maheshwari, Virginia M Stone, Annie Hasib, Fiona N Manderson Koivula, Aoife Watson, Stephen Harkin, Nigel Irwin, James A Shaw, Neville H McClenaghan, Viktória Venglovecz, Attila Ébert, Malin Flodström-Tullberg, Michael G White, Catriona Kelly. Short-term CFTR inhibition reduces islet area in C57BL/6 mice. Scientific reports. 2019 08; 9(1):11244. doi: 10.1038/s41598-019-47745-w. [PMID: 31375720]
  • Vera F C Ferreira, Bruno L Oliveira, João D Santos, João D G Correia, Carlos M Farinha, Filipa Mendes. Targeting of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein with a Technetium-99m Imaging Probe. ChemMedChem. 2018 07; 13(14):1469-1478. doi: 10.1002/cmdc.201800187. [PMID: 29864241]
  • Rui Shi, Zi-Ting Xiao, Yi-Jun Zheng, Yi-Lin Zhang, Jia-Wen Xu, Jie-Hong Huang, Wen-Liang Zhou, Pei-Bo Li, Wei-Wei Su. Naringenin Regulates CFTR Activation and Expression in Airway Epithelial Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017; 44(3):1146-1160. doi: 10.1159/000485419. [PMID: 29179179]
  • Janne P Capra, Sinikka M Eskelinen. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment. Canadian journal of physiology and pharmacology. 2017 Jan; 95(1):72-83. doi: 10.1139/cjpp-2016-0051. [PMID: 27901358]
  • Madhumitha Rajagopal, Sheela V Thomas, Paru P Kathpalia, Yu Chen, Alan C Pao. Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells. American journal of physiology. Cell physiology. 2014 Feb; 306(3):C263-78. doi: 10.1152/ajpcell.00381.2012. [PMID: 24284792]
  • I Rubera, C Duranton, N Melis, M Cougnon, B Mograbi, M Tauc. Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity. Cell death & disease. 2013 Oct; 4(?):e817. doi: 10.1038/cddis.2013.355. [PMID: 24091660]
  • Michael Lu, Chuanqing Ding. CFTR-mediated Cl(-) transport in the acinar and duct cells of rabbit lacrimal gland. Current eye research. 2012 Aug; 37(8):671-7. doi: 10.3109/02713683.2012.675613. [PMID: 22578307]
  • Suparerk Laohapitakworn, Jirawan Thongbunchoo, La-Iad Nakkrasae, Nateetip Krishnamra, Narattaphol Charoenphandhu. Parathyroid hormone (PTH) rapidly enhances CFTR-mediated HCO₃⁻ secretion in intestinal epithelium-like Caco-2 monolayer: a novel ion regulatory action of PTH. American journal of physiology. Cell physiology. 2011 Jul; 301(1):C137-49. doi: 10.1152/ajpcell.00001.2011. [PMID: 21389278]
  • Florian Bossard, Emilie Silantieff, Emmanuelle Lavazais-Blancou, Amal Robay, Christine Sagan, Bertrand Rozec, Chantal Gauthier. β1, β2, and β3 adrenoceptors and Na+/H+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis. American journal of respiratory cell and molecular biology. 2011 Jan; 44(1):91-8. doi: 10.1165/rcmb.2009-0372oc. [PMID: 20203292]
  • Danjun Fang, Richard H West, Mary E Manson, Jennifer Ruddy, Dechen Jiang, Stephen F Previs, Nitin D Sonawane, James D Burgess, Thomas J Kelley. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis. Respiratory research. 2010 May; 11(?):61. doi: 10.1186/1465-9921-11-61. [PMID: 20487541]
  • Mairead Kelly, Stephanie Trudel, Franck Brouillard, Frederick Bouillaud, Julien Colas, Thao Nguyen-Khoa, Mario Ollero, Aleksander Edelman, Janine Fritsch. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. The Journal of pharmacology and experimental therapeutics. 2010 Apr; 333(1):60-9. doi: 10.1124/jpet.109.162032. [PMID: 20051483]
  • Ming Lu, Ke Dong, Marie E Egan, Gerhard H Giebisch, Emile L Boulpaep, Steven C Hebert. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct. Proceedings of the National Academy of Sciences of the United States of America. 2010 Mar; 107(13):6082-7. doi: 10.1073/pnas.0902661107. [PMID: 20231442]
  • A K Stewart, A Yamamoto, M Nakakuki, T Kondo, S L Alper, H Ishiguro. Functional coupling of apical Cl-/HCO3- exchange with CFTR in stimulated HCO3- secretion by guinea pig interlobular pancreatic duct. American journal of physiology. Gastrointestinal and liver physiology. 2009 Jun; 296(6):G1307-17. doi: 10.1152/ajpgi.90697.2008. [PMID: 19342507]
  • Sebastien L'hoste, Abderrahmen Chargui, Radia Belfodil, Christophe Duranton, Isabelle Rubera, Baharia Mograbi, Chantal Poujeol, Michel Tauc, Philippe Poujeol. CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free radical biology & medicine. 2009 Apr; 46(8):1017-31. doi: 10.1016/j.freeradbiomed.2008.12.009. [PMID: 19133329]
  • Hongyu Li, David N Sheppard. Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2009; 23(4):203-16. doi: 10.2165/11313570-000000000-00000. [PMID: 19697963]
  • Fabrice Antigny, Caroline Norez, Frédéric Becq, Clarisse Vandebrouck. Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell calcium. 2008 Feb; 43(2):175-83. doi: 10.1016/j.ceca.2007.05.002. [PMID: 17590432]
  • Brenda S Magenheimer, Patricia L St John, Kathryn S Isom, Dale R Abrahamson, Robert C De Lisle, Darren P Wallace, Robin L Maser, Jared J Grantham, James P Calvet. Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(-) Co-transporter-dependent cystic dilation. Journal of the American Society of Nephrology : JASN. 2006 Dec; 17(12):3424-37. doi: 10.1681/asn.2006030295. [PMID: 17108316]
  • Hongyu Li, Iain A Findlay, David N Sheppard. The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney international. 2004 Nov; 66(5):1926-38. doi: 10.1111/j.1523-1755.2004.00967.x. [PMID: 15496164]