Galidesivir (BioDeep_00000802614)

   


代谢物信息卡片


Galidesivir

化学式: C11H15N5O3 (265.117484)
中文名称: 加利司韦
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=C(C2=C(N1)C(=NC=N2)N)C3C(C(C(N3)CO)O)O
InChI: InChI=1S/C11H15N5O3/c12-11-8-6(14-3-15-11)4(1-13-8)7-10(19)9(18)5(2-17)16-7/h1,3,5,7,9-10,13,16-19H,2H2,(H2,12,14,15)/t5-,7+,9-,10+/m1/s1

描述信息

COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor
C254 - Anti-Infective Agent > C281 - Antiviral Agent
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

1 个代谢物同义名

Galidesivir



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Amanda Mathis, David Collins, Sylvia Dobo, Dennis M Walling, William P Sheridan, Ray Taylor. Pharmacokinetics and Safety of the Nucleoside Analog Antiviral Drug Galidesivir Administered to Healthy Adult Subjects. Clinical pharmacology in drug development. 2022 04; 11(4):467-474. doi: 10.1002/cpdd.1037. [PMID: 35182042]
  • Ismail Celik, Meryem Erol, Zekeriya Duzgun. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Molecular diversity. 2022 Feb; 26(1):279-292. doi: 10.1007/s11030-021-10215-5. [PMID: 33765239]
  • Ray Taylor, Richard Bowen, James F Demarest, Michael DeSpirito, Airn Hartwig, Helle Bielefeldt-Ohmann, Dennis M Walling, Amanda Mathis, Yarlagadda S Babu. Activity of Galidesivir in a Hamster Model of SARS-CoV-2. Viruses. 2021 12; 14(1):. doi: 10.3390/v14010008. [PMID: 35062212]
  • João Paulo Almirão de Jesus, Letícia Cristina Assis, Alexandre Alves de Castro, Elaine Fontes Ferreira da Cunha, Eugenie Nepovimova, Kamil Kuca, Teodorico de Castro Ramalho, Felipe de Almeida La Porta. Effect of drug metabolism in the treatment of SARS-CoV-2 from an entirely computational perspective. Scientific reports. 2021 10; 11(1):19998. doi: 10.1038/s41598-021-99451-1. [PMID: 34620963]
  • Tiago da Silva Arouche, Arthur Ferreira Reis, Anderson Yuri Martins, Jose Francisco S Costa, Raul Nunes Carvalho Junior, Antonio Maia J C Neto. Interactions Between Remdesivir, Ribavirin, Favipiravir, Galidesivir, Hydroxychloroquine and Chloroquine with Fragment Molecular of the COVID-19 Main Protease with Inhibitor N3 Complex (PDB ID:6LU7) Using Molecular Docking. Journal of nanoscience and nanotechnology. 2020 12; 20(12):7311-7323. doi: 10.1166/jnn.2020.18955. [PMID: 32711596]
  • Abdo A Elfiky. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life sciences. 2020 Jul; 253(?):117592. doi: 10.1016/j.lfs.2020.117592. [PMID: 32222463]
  • Wen-Fa Zhang, Preyesh Stephen, Jean-François Thériault, Ruixuan Wang, Sheng-Xiang Lin. Novel Coronavirus Polymerase and Nucleotidyl-Transferase Structures: Potential to Target New Outbreaks. The journal of physical chemistry letters. 2020 Jun; 11(11):4430-4435. doi: 10.1021/acs.jpclett.0c00571. [PMID: 32392072]
  • Ka-Tim Choy, Alvina Yin-Lam Wong, Prathanporn Kaewpreedee, Sin Fun Sia, Dongdong Chen, Kenrie Pui Yan Hui, Daniel Ka Wing Chu, Michael Chi Wai Chan, Peter Pak-Hang Cheung, Xuhui Huang, Malik Peiris, Hui-Ling Yen. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral research. 2020 06; 178(?):104786. doi: 10.1016/j.antiviral.2020.104786. [PMID: 32251767]
  • Jonna B Westover, Amanda Mathis, Ray Taylor, Luci Wandersee, Kevin W Bailey, Eric J Sefing, Brady T Hickerson, Kie-Hoon Jung, William P Sheridan, Brian B Gowen. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral research. 2018 08; 156(?):38-45. doi: 10.1016/j.antiviral.2018.05.013. [PMID: 29864447]
  • Sajad Khan, Muhammad, Abdur Rauf, Ahsan Khan, Muhammad Rizwan, Seema Patel, Haroon Khan, Adel M Mahasneh, Mohammad S Mubarak. Comprehensive Review on Ebola (EBOV) Virus: Future Prospects. Infectious disorders drug targets. 2018; 18(2):96-104. doi: 10.2174/1871526517666170817100828. [PMID: 28820067]
  • Luděk Eyer, Darina Zouharová, Jana Širmarová, Martina Fojtíková, Michal Štefánik, Jan Haviernik, Radim Nencka, Erik de Clercq, Daniel Růžek. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral research. 2017 06; 142(?):63-67. doi: 10.1016/j.antiviral.2017.03.012. [PMID: 28336346]
  • Anthony P Cardile, Travis K Warren, Karen A Martins, Ronald B Reisler, Sina Bavari. Will There Be a Cure for Ebola?. Annual review of pharmacology and toxicology. 2017 01; 57(?):329-348. doi: 10.1146/annurev-pharmtox-010716-105055. [PMID: 27959624]
  • Justin G Julander, Shanta Bantia, Brian R Taubenheim, Dena M Minning, Pravin Kotian, John D Morrey, Donald F Smee, William P Sheridan, Yarlagadda S Babu. BCX4430, a novel nucleoside analog, effectively treats yellow fever in a Hamster model. Antimicrobial agents and chemotherapy. 2014 Nov; 58(11):6607-14. doi: 10.1128/aac.03368-14. [PMID: 25155605]
  • Indranil Basu, Joseph Locker, Maria B Cassera, Thomas J Belbin, Emilio F Merino, Xinyuan Dong, Ivan Hemeon, Gary B Evans, Chandan Guha, Vern L Schramm. Growth and metastases of human lung cancer are inhibited in mouse xenografts by a transition state analogue of 5'-methylthioadenosine phosphorylase. The Journal of biological chemistry. 2011 Feb; 286(6):4902-11. doi: 10.1074/jbc.m110.198374. [PMID: 21135097]
  • Y S Weems, A W Lewis, D A Neuendorff, R D Randel, C W Weems. Endocannabinoid 1 and 2 (CB(1); CB(2)) receptor agonists affect negatively cow luteal function in vitro. Prostaglandins & other lipid mediators. 2009 Dec; 90(3-4):89-93. doi: 10.1016/j.prostaglandins.2009.09.003. [PMID: 19765667]