Cedpht (BioDeep_00000779159)

   


代谢物信息卡片


1,6-DIPHENYL-1,3,5-HEXATRIENE-4-PROPIONIC ACID

化学式: C21H20O2 (304.146322)
中文名称: 1,6-二苯基-1,3,5-己三烯-4-丙酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC=C(C=C1)C=CC=CC=CC2=CC=C(C=C2)CCC(=O)O
InChI: InChI=1S/C21H20O2/c22-21(23)17-16-20-14-12-19(13-15-20)11-5-2-1-4-8-18-9-6-3-7-10-18/h1-15H,16-17H2,(H,22,23)/b2-1+,8-4+,11-5+

描述信息

同义名列表

2 个代谢物同义名

1,6-DIPHENYL-1,3,5-HEXATRIENE-4-PROPIONIC ACID; Cedpht



数据库引用编号

3 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mariano G Buffone, Gustavo F Doncel, Juan C Calamera, Sandra V Verstraeten. Capacitation-associated changes in membrane fluidity in asthenozoospermic human spermatozoa. International journal of andrology. 2009 Aug; 32(4):360-75. doi: 10.1111/j.1365-2605.2008.00874.x. [PMID: 18399983]
  • João P Monteiro, Romeu A Videira, Manuel J Matos, Augusto M Dinis, Amália S Jurado. Non-selective toxicological effects of the insect juvenile hormone analogue methoprene. A membrane biophysical approach. Applied biochemistry and biotechnology. 2008 Sep; 150(3):243-57. doi: 10.1007/s12010-007-8127-6. [PMID: 18682901]
  • Marlene Lúcio, Helena Ferreira, José L F C Lima, Salette Reis. Use of liposomes as membrane models to evaluate the contribution of drug-membrane interactions to antioxidant properties of etodolac. Redox report : communications in free radical research. 2008; 13(5):225-36. doi: 10.1179/135100008x308939. [PMID: 18796242]
  • Marlene Lúcio, Helena Ferreira, José L F C Lima, Salette Reis. Use of liposomes to evaluate the role of membrane interactions on antioxidant activity. Analytica chimica acta. 2007 Jul; 597(1):163-70. doi: 10.1016/j.aca.2007.06.039. [PMID: 17658327]
  • Gilbert O Fruhwirth, Franz S Wagner, Albin Hermetter. The alphaPROX assay: fluorescence screening of the inhibitory effects of hydrophilic antioxidants on protein oxidation. Analytical and bioanalytical chemistry. 2006 Feb; 384(3):703-12. doi: 10.1007/s00216-005-0179-2. [PMID: 16440197]
  • M Luisa Sagristá, Antonio E García, M Africa De Madariaga, Margarita Mora. Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Free radical research. 2002 Mar; 36(3):329-40. doi: 10.1080/10715760290019354. [PMID: 12071352]
  • M R Rintoul, B F de Arcuri, R D Morero. Effects of the antibiotic peptide microcin J25 on liposomes: role of acyl chain length and negatively charged phospholipid. Biochimica et biophysica acta. 2000 Dec; 1509(1-2):65-72. doi: 10.1016/s0005-2736(00)00249-2. [PMID: 11118518]
  • S M Rosa, M C Antunes-Madeira, A S Jurado, V V Madeira. Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model. Applied biochemistry and biotechnology. 2000 Jun; 87(3):165-75. doi: 10.1385/abab:87:3:165. [PMID: 10982227]
  • R H Massol, S S Antollini, F J Barrantes. Effect of organochlorine insecticides on nicotinic acetylcholine receptor-rich membranes. Neuropharmacology. 2000 Apr; 39(6):1095-106. doi: 10.1016/s0028-3908(99)00194-x. [PMID: 10727720]
  • F Ricchelli, S Gobbo, G Moreno, C Salet. Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry. 1999 Jul; 38(29):9295-300. doi: 10.1021/bi9900828. [PMID: 10413503]
  • R A Igal, I N de Gómez Dumm, R G Goya. Modulation of rat liver lipid metabolism by prolactin. Prostaglandins, leukotrienes, and essential fatty acids. 1998 Dec; 59(6):395-400. doi: 10.1016/s0952-3278(98)90101-6. [PMID: 10102385]
  • R D Kaiser, E London. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry. 1998 Jun; 37(22):8180-90. doi: 10.1021/bi980064a. [PMID: 9609714]
  • M C Antunes-Madeira, R A Videira, M L Klüppel, V V Madeira. Amiodarone effects on membrane organization evaluated by fluorescence polarization. International journal of cardiology. 1995 Mar; 48(3):211-8. doi: 10.1016/0167-5273(94)02247-g. [PMID: 7782133]
  • G Palù, M A Biasolo, G Sartor, L Masotti, E Papini, M Floreani, P Palatini. Effects of herpes simplex virus type 1 infection on the plasma membrane and related functions of HeLa S3 cells. The Journal of general virology. 1994 Dec; 75 ( Pt 12)(?):3337-44. doi: 10.1099/0022-1317-75-12-3337. [PMID: 7996128]
  • S Kitagawa, M Orinaka, H Hirata. Depth-dependent change in membrane fluidity by phenolic compounds in bovine platelets and its relationship with their effects on aggregation and adenylate cyclase activity. Biochimica et biophysica acta. 1993 Nov; 1179(3):277-82. doi: 10.1016/0167-4889(93)90083-2. [PMID: 8218372]
  • S Kitagawa, M Matsubayashi, K Kotani, K Usui, F Kametani. Asymmetry of membrane fluidity in the lipid bilayer of blood platelets: fluorescence study with diphenylhexatriene and analogs. The Journal of membrane biology. 1991 Feb; 119(3):221-7. doi: 10.1007/bf01868727. [PMID: 2056522]
  • K W Gasser, A Goldsmith, U Hopfer. Regulation of chloride transport in parotid secretory granules by membrane fluidity. Biochemistry. 1990 Aug; 29(31):7282-8. doi: 10.1021/bi00483a018. [PMID: 1698453]
  • G Friedlander, C Le Grimellec, M C Giocondi, C Amiel. Benzyl alcohol increases membrane fluidity and modulates cyclic AMP synthesis in intact renal epithelial cells. Biochimica et biophysica acta. 1987 Oct; 903(2):341-8. doi: 10.1016/0005-2736(87)90224-0. [PMID: 2820491]
  • C G Morgan, E W Thomas, Y P Yianni. The use of fluorescence energy transfer to distinguish between poly(ethylene glycol)-induced aggregation and fusion of phospholipid vesicles. Biochimica et biophysica acta. 1983 Mar; 728(3):356-62. doi: 10.1016/0005-2736(83)90506-0. [PMID: 6687434]