nitrocefin (BioDeep_00000767957)

   


代谢物信息卡片


nitrocefin

化学式: C21H16N4O8S2 (516.0409536)
中文名称: 头孢硝噻吩
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C(=C(N2C(S1)C(C2=O)NC(=O)CC3=CC=CS3)C(=O)O)C=CC4=C(C=C(C=C4)[N+](=O)[O-])[N+](=O)[O-]
InChI: InChI=1S/C21H16N4O8S2/c26-16(9-14-2-1-7-34-14)22-17-19(27)23-18(21(28)29)12(10-35-20(17)23)4-3-11-5-6-13(24(30)31)8-15(11)25(32)33/h1-8,17,20H,9-10H2,(H,22,26)(H,28,29)/b4-3+/t17-,20-/m1/s1

描述信息

D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

同义名列表

1 个代谢物同义名

nitrocefin



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Nagwa A Shoeib, Lamiaa A Al-Madboly, Amany E Ragab. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt. Pharmaceutical biology. 2022 Dec; 60(1):1969-1980. doi: 10.1080/13880209.2022.2127791. [PMID: 36226757]
  • Elliot D Mock, Ioli Kotsogianni, Wouter P F Driever, Carmen S Fonseca, Jelle M Vooijs, Hans den Dulk, Constant A A van Boeckel, Mario van der Stelt. Structure-Activity Relationship Studies of Pyrimidine-4-Carboxamides as Inhibitors of N-Acylphosphatidylethanolamine Phospholipase D. Journal of medicinal chemistry. 2021 01; 64(1):481-515. doi: 10.1021/acs.jmedchem.0c01441. [PMID: 33382264]
  • Arpita Shrivastav, R K Sharma, Neeraj Shrivastava, Vidhi Gautam, Sachin Kumar Jain. Study of inhibitory potential and percent inhibition of oil of Syzygium aromaticum and leaves of Ocimum sanctum on ESBL enzyme from Escherichia coli in broilers of Jabalpur. Indian journal of pharmacology. 2019 Sep; 51(5):337-342. doi: 10.4103/ijp.ijp_87_17. [PMID: 31831923]
  • Tara R deBoer, Nicole J Tarlton, Reina Yamaji, Sheila Adams-Sapper, Tiffany Z Wu, Santanu Maity, Giri K Vesgesna, Corinne M Sadlowski, Peter DePaola, Lee W Riley, Niren Murthy. An Enzyme-Mediated Amplification Strategy Enables Detection of β-Lactamase Activity Directly in Unprocessed Clinical Samples for Phenotypic Detection of β-Lactam Resistance. Chembiochem : a European journal of chemical biology. 2018 10; 19(20):2173-2177. doi: 10.1002/cbic.201800443. [PMID: 30079487]
  • Po-Jung Jimmy Huang, Rachel Pautler, Jenitta Shanmugaraj, Geneviève Labbé, Juewen Liu. Inhibiting the VIM-2 Metallo-β-Lactamase by Graphene Oxide and Carbon Nanotubes. ACS applied materials & interfaces. 2015 May; 7(18):9898-903. doi: 10.1021/acsami.5b01954. [PMID: 25897818]
  • M T Rehman, M Faheem, A U Khan. Insignificant β-lactamase activity of human serum albumin: no panic to nonmicrobial-based drug resistance. Letters in applied microbiology. 2013 Oct; 57(4):325-9. doi: 10.1111/lam.12116. [PMID: 23758063]
  • Rong-Dih Lin, Yi-Ping Chin, Wen-Chi Hou, Mei-Hsien Lee. The effects of antibiotics combined with natural polyphenols against clinical methicillin-resistant Staphylococcus aureus (MRSA). Planta medica. 2008 Jun; 74(8):840-6. doi: 10.1055/s-2008-1074559. [PMID: 18546080]
  • Mariagrazia Perilli, Giuseppe Celenza, Francesca De Santis, Cristina Pellegrini, Chiara Forcella, Gian Maria Rossolini, Stefania Stefani, Gianfranco Amicosante. E240V substitution increases catalytic efficiency toward ceftazidime in a new natural TEM-type extended-spectrum beta-lactamase, TEM-149, from Enterobacter aerogenes and Serratia marcescens clinical isolates. Antimicrobial agents and chemotherapy. 2008 Mar; 52(3):915-9. doi: 10.1128/aac.01028-07. [PMID: 18160520]
  • Fiona A Harding, Amy D Liu, Marcia Stickler, O Jennifer Razo, Regina Chin, Nargol Faravashi, Wendy Viola, Tom Graycar, V Pete Yeung, Wolfgang Aehle, Daan Meijer, Stephanie Wong, M Harunur Rashid, Ana M Valdes, Volker Schellenberger. A beta-lactamase with reduced immunogenicity for the targeted delivery of chemotherapeutics using antibody-directed enzyme prodrug therapy. Molecular cancer therapeutics. 2005 Nov; 4(11):1791-800. doi: 10.1158/1535-7163.mct-05-0189. [PMID: 16276001]
  • Suranjana Arora, Manjusri Bal. AmpC beta-lactamase producing bacterial isolates from Kolkata hospital. The Indian journal of medical research. 2005 Sep; 122(3):224-33. doi: NULL. [PMID: 16251779]
  • Ye Ni, Rachel R Chen. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnology and bioengineering. 2004 Sep; 87(6):804-11. doi: 10.1002/bit.20202. [PMID: 15329939]
  • André Galarneau, Martin Primeau, Louis-Eric Trudeau, Stephen W Michnick. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nature biotechnology. 2002 Jun; 20(6):619-22. doi: 10.1038/nbt0602-619. [PMID: 12042868]
  • D S Snyder, T J McIntosh. The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry. 2000 Sep; 39(38):11777-87. doi: 10.1021/bi000810n. [PMID: 10995246]
  • K Graves-Woodward, R F Pratt. Interactions of soluble penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus with moenomycin. Biochemistry. 1999 Aug; 38(32):10533-42. doi: 10.1021/bi982309p. [PMID: 10441150]
  • B Nerli, F García, G Picó. An unknown hydrolase activity of human serum albumin: beta-lactamase activity. Biochemistry and molecular biology international. 1995 Nov; 37(5):909-15. doi: NULL. [PMID: 8624497]
  • A Sotto, P Peray, F Geny, C Brunschwig, C Carrière, M Galtier, M Ramuz, J Jourdan. An enzymatic method for assaying sulbactam in human serum: comparison with high performance liquid chromatography. The Journal of antimicrobial chemotherapy. 1995 Mar; 35(3):429-33. doi: 10.1093/jac/35.3.429. [PMID: 7782260]
  • B Nerli, G Picó. Evidence of human serum albumin beta-lactamase activity. Biochemistry and molecular biology international. 1994 Mar; 32(4):789-95. doi: NULL. [PMID: 8038728]
  • A Sotto, C Carrière, M J Carles, M Ramuz, J Jourdan. [Kinetics of serum activity of beta-lactamases inhibitors. Development of a biologic assay]. Pathologie-biologie. 1991 Feb; 39(2):147-9. doi: NULL. [PMID: 2017339]
  • R N Jones, H W Wilson, W J Novick, A L Barry, C Thornsberry. In vitro evaluation of CENTA, a new beta-lactamase-susceptible chromogenic cephalosporin reagent. Journal of clinical microbiology. 1982 May; 15(5):954-8. doi: 10.1128/jcm.15.5.954-958.1982. [PMID: 7047560]
  • R N Jones, H W Wilson, W J Novick. In vitro evaluation of pyridine-2-azo-p-dimethylaniline cephalosporin, a new diagnostic chromogenic reagent, and comparison with nitrocefin, cephacetrile, and other beta-lactam compounds. Journal of clinical microbiology. 1982 Apr; 15(4):677-83. doi: 10.1128/jcm.15.4.677-683.1982. [PMID: 6978350]