Cilostamide (BioDeep_00000720264)

   


代谢物信息卡片


Cilostamide

化学式: C20H26N2O3 (342.1943)
中文名称: 西洛酰胺
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CN(C1CCCCC1)C(=O)CCCOC2=CC3=C(C=C2)NC(=O)C=C3
InChI: InChI=1S/C20H26N2O3/c1-22(16-6-3-2-4-7-16)20(24)8-5-13-25-17-10-11-18-15(14-17)9-12-19(23)21-18/h9-12,14,16H,2-8,13H2,1H3,(H,21,23)

描述信息

D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors
D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors
C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor

同义名列表

1 个代谢物同义名

Cilostamide



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Kyle D Medak, Greg L McKie, Hesham Shamshoum, Ian Seguin, David C Wright. The glucose lowering effects of CL 316,243 dissipate with repeated use and are rescued bycilostamide. Physiological reports. 2022 02; 10(4):e15187. doi: 10.14814/phy2.15187. [PMID: 35179321]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Eric Féraille, Eva Dizin, Isabelle Roth, Jean-Paul Derouette, Ildiko Szanto, Pierre-Yves Martin, Sophie de Seigneux, Udo Hasler. NADPH oxidase 4 deficiency reduces aquaporin-2 mRNA expression in cultured renal collecting duct principal cells via increased PDE3 and PDE4 activity. PloS one. 2014; 9(1):e87239. doi: 10.1371/journal.pone.0087239. [PMID: 24466344]
  • Marta Fernández-Galilea, Patricia Pérez-Matute, Pedro L Prieto-Hontoria, J Alfredo Martinez, Maria J Moreno-Aliaga. Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. Journal of lipid research. 2012 Nov; 53(11):2296-306. doi: 10.1194/jlr.m027086. [PMID: 22941773]
  • F K Albuz, M Sasseville, M Lane, D T Armstrong, J G Thompson, R B Gilchrist. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Human reproduction (Oxford, England). 2010 Dec; 25(12):2999-3011. doi: 10.1093/humrep/deq246. [PMID: 20870682]
  • Rima Tahseldar-Roumieh, Thérèse Keravis, Suha Maarouf, Hélène Justiniano, Ramzi Sabra, Claire Lugnier. PDEs1-5 activity and expression in tissues of cirrhotic rats reveal a role for aortic PDE3 in NO desensitization. International journal of experimental pathology. 2009 Dec; 90(6):605-14. doi: 10.1111/j.1365-2613.2009.00678.x. [PMID: 19758418]
  • Jérôme Leroy, Aniella Abi-Gerges, Viacheslav O Nikolaev, Wito Richter, Patrick Lechêne, Jean-Luc Mazet, Marco Conti, Rodolphe Fischmeister, Grégoire Vandecasteele. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circulation research. 2008 May; 102(9):1091-100. doi: 10.1161/circresaha.107.167817. [PMID: 18369156]
  • Hong Wang, Lisa A Reaves, Neilé K Edens. Ginseng extract inhibits lipolysis in rat adipocytes in vitro by activating phosphodiesterase 4. The Journal of nutrition. 2006 Feb; 136(2):337-42. doi: 10.1093/jn/136.2.337. [PMID: 16424109]
  • Wan Huang, Nikolas Dedousis, Bankim A Bhatt, Robert M O'Doherty. Impaired activation of phosphatidylinositol 3-kinase by leptin is a novel mechanism of hepatic leptin resistance in diet-induced obesity. The Journal of biological chemistry. 2004 May; 279(21):21695-700. doi: 10.1074/jbc.m401546200. [PMID: 14993225]
  • Xiujun Zhang, Gale B Carey. Plasma membrane-bound cyclic AMP phosphodiesterase activity in 3T3-L1 adipocytes. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2004 Mar; 137(3):309-16. doi: 10.1016/j.cbpc.2003.12.005. [PMID: 15050518]
  • Y Inoue, K Toga, T Sudo, K Tachibana, S Tochizawa, Y Kimura, Y Yoshida, H Hidaka. Suppression of arterial intimal hyperplasia by cilostamide, a cyclic nucleotide phosphodiesterase 3 inhibitor, in a rat balloon double-injury model. British journal of pharmacology. 2000 May; 130(2):231-41. doi: 10.1038/sj.bjp.0703287. [PMID: 10807659]
  • L A Zacher, G B Carey. Cyclic AMP metabolism by swine adipocyte microsomal and plasma membranes. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 1999 Sep; 124(1):61-71. doi: 10.1016/s0305-0491(99)00098-x. [PMID: 10582321]
  • M Tanahashi, S Hara, M Yoshida, M Suzuki-Kusaba, H Hisa, S Satoh. Effects of rolipram and cilostamide on renal functions and cyclic AMP release in anesthetized dogs. The Journal of pharmacology and experimental therapeutics. 1999 Jun; 289(3):1533-8. doi: NULL. [PMID: 10336549]
  • K Matousovic, Y Tsuboi, H Walker, J P Grande, T P Dousa. Inhibitors of cyclic nucleotide phosphodiesterase isozymes block renal tubular cell proliferation induced by folic acid. The Journal of laboratory and clinical medicine. 1997 Nov; 130(5):487-95. doi: 10.1016/s0022-2143(97)90125-6. [PMID: 9390636]
  • X Pan, E Arauz, J J Krzanowski, D F Fitzpatrick, J B Polson. Synergistic interactions between selective pharmacological inhibitors of phosphodiesterase isozyme families PDE III and PDE IV to attenuate proliferation of rat vascular smooth muscle cells. Biochemical pharmacology. 1994 Aug; 48(4):827-35. doi: 10.1016/0006-2952(94)90062-0. [PMID: 7521642]
  • A K Coffey, D J O'Sullivan, S Homma, T P Dousa, H Valtin. Induction of intramembranous particle clusters in mice with nephrogenic diabetes insipidus. The American journal of physiology. 1991 Oct; 261(4 Pt 2):F640-6. doi: 10.1152/ajprenal.1991.261.4.f640. [PMID: 1656782]
  • S Takeda, C T Lin, P G Morgano, S J McIntyre, T P Dousa. High activity of low-Michaelis-Menten constant 3', 5'-cyclic adenosine monophosphate-phosphodiesterase isozymes in renal inner medulla of mice with hereditary nephrogenic diabetes insipidus. Endocrinology. 1991 Jul; 129(1):287-94. doi: 10.1210/endo-129-1-287. [PMID: 1647298]
  • H Valtin, A K Coffey, D J O'Sullivan, S Homma, T P Dousa. Causes of the urinary concentrating defect in mice with nephrogenic diabetes insipidus. Physiologia Bohemoslovaca. 1990; 39(1):103-11. doi: NULL. [PMID: 2165265]
  • M L Elks, V C Manganiello. A role for soluble cAMP phosphodiesterases in differentiation of 3T3-L1 adipocytes. Journal of cellular physiology. 1985 Aug; 124(2):191-8. doi: 10.1002/jcp.1041240204. [PMID: 2413050]
  • T Shimizu, H Mori, Y Yasuda, S Morita, K Nakagawa. The metabolism of cilostamide in the rat in vitro and in vivo. Xenobiotica; the fate of foreign compounds in biological systems. 1985 Jan; 15(1):21-9. doi: 10.3109/00498258509045331. [PMID: 3984381]