Mastoparan X (BioDeep_00000706543)

   


代谢物信息卡片


Mastoparan X

化学式: C73H126N20O15S (1554.9431766000002)
中文名称: ILE-ASN-TRP-LYS-GLY-ILE-ALA-ALA-MET-ALA-LYS-LYS-LEU-LEU-NH2
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC(C)C(C(=O)NC(CC(=O)N)C(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CCCCN)C(=O)NCC(=O)NC(C(C)CC)C(=O)NC(C)C(=O)NC(C)C(=O)NC(CCSC)C(=O)NC(C)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)N)N
InChI: InChI=1S/C73H126N20O15S/c1-13-41(7)59(78)72(107)92-56(36-57(77)94)71(106)91-55(35-46-37-80-48-24-16-15-23-47(46)48)70(105)87-49(25-17-20-29-74)65(100)81-38-58(95)93-60(42(8)14-2)73(108)84-43(9)62(97)82-44(10)63(98)86-52(28-32-109-12)66(101)83-45(11)64(99)85-50(26-18-21-30-75)67(102)88-51(27-19-22-31-76)68(103)90-54(34-40(5)6)69(104)89-53(61(79)96)33-39(3)4/h15-16,23-24,37,39-45,49-56,59-60,80H,13-14,17-22,25-36,38,74-76,78H2,1-12H3,(H2,77,94)(H2,79,96)(H,81,100)(H,82,97)(H,83,101)(H,84,108)(H,85,99)(H,86,98)(H,87,105)(H,88,102)(H,89,104)(H,90,103)(H,91,106)(H,92,107)(H,93,95)/t41-,42-,43-,44-,45-,49-,50-,51-,52-,53-,54-,55-,56-,59-,60-/m0/s1

描述信息

Mastoparan X is a GTP-binding regulatory protein (G protein)-activating peptide, and a tetradecapeptide from wasp venom. Mastoparan X acts function by the direct activation of G protein that couple to phospholipase C to cause secretion from various kinds of cells[1].

同义名列表

1 个代谢物同义名

Mastoparan X



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xue Qin Zhao, Lei Wang, Chun Ling Zhu, Xiang Hong Xue, Xiao Jing Xia, Xi Long Wu, Yun Di Wu, Shan Qin Liu, Gai Ping Zhang, Yue Yu Bai, Hanna Fotina, Jian He Hu. Oral Administration of the Antimicrobial Peptide Mastoparan X Alleviates Enterohemorrhagic Escherichia coli-Induced Intestinal Inflammation and Regulates the Gut Microbiota. Probiotics and antimicrobial proteins. 2024 Feb; 16(1):138-151. doi: 10.1007/s12602-022-10013-x. [PMID: 36515889]
  • Erin E Schuler, Sureshbabu Nagarajan, R Brian Dyer. Submillisecond Dynamics of Mastoparan X Insertion into Lipid Membranes. The journal of physical chemistry letters. 2016 Sep; 7(17):3365-70. doi: 10.1021/acs.jpclett.6b01512. [PMID: 27513014]
  • Elizabeth Cox, Austen Michalak, Sarah Pagentine, Pamela Seaton, Antje Pokorny. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Biochimica et biophysica acta. 2014 Sep; 1838(9):2198-204. doi: 10.1016/j.bbamem.2014.04.018. [PMID: 24780374]
  • Sara Bobone, Daniela Roversi, Lorenzo Giordano, Marta De Zotti, Fernando Formaggio, Claudio Toniolo, Yoonkyung Park, Lorenzo Stella. The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models. Biochemistry. 2012 Dec; 51(51):10124-6. doi: 10.1021/bi3015086. [PMID: 23228161]
  • Keisuke Ikeda, Tomoshi Kameda, Erisa Harada, Hideo Akutsu, Toshimichi Fujiwara. Combined use of replica-exchange molecular dynamics and magic-angle-spinning solid-state NMR spectral simulations for determining the structure and orientation of membrane-bound peptide. The journal of physical chemistry. B. 2011 Jul; 115(29):9327-36. doi: 10.1021/jp205290t. [PMID: 21668001]
  • J R Henriksen, T L Andresen. Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles. Biophysical journal. 2011 Jul; 101(1):100-9. doi: 10.1016/j.bpj.2011.05.047. [PMID: 21723819]
  • Lin Guo, Kathryn B Smith-Dupont, Feng Gai. Diffusion as a probe of peptide-induced membrane domain formation. Biochemistry. 2011 Mar; 50(12):2291-7. doi: 10.1021/bi102068j. [PMID: 21332237]
  • Thomas Etzerodt, Jonas R Henriksen, Palle Rasmussen, Mads H Clausen, Thomas L Andresen. Selective acylation enhances membrane charge sensitivity of the antimicrobial peptide mastoparan-x. Biophysical journal. 2011 Jan; 100(2):399-409. doi: 10.1016/j.bpj.2010.11.040. [PMID: 21244836]
  • Kathryn B Smith-Dupont, Lin Guo, Feng Gai. Diffusion as a probe of the heterogeneity of antimicrobial peptide-membrane interactions. Biochemistry. 2010 Jun; 49(22):4672-8. doi: 10.1021/bi100426p. [PMID: 20455545]
  • Jia Tang, Rachel S Signarvic, William F DeGrado, Feng Gai. Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers. Biochemistry. 2007 Dec; 46(48):13856-63. doi: 10.1021/bi7018404. [PMID: 17994771]
  • Yasuto Todokoro, Ikuko Yumen, Kei Fukushima, Shin-Won Kang, Jang-Su Park, Toshiyuki Kohno, Kaori Wakamatsu, Hideo Akutsu, Toshimichi Fujiwara. Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR. Biophysical journal. 2006 Aug; 91(4):1368-79. doi: 10.1529/biophysj.106.082735. [PMID: 16714348]
  • G Schwarz, R Reiter. Negative cooperativity and aggregation in biphasic binding of mastoparan X peptide to membranes with acidic lipids. Biophysical chemistry. 2001 May; 90(3):269-77. doi: 10.1016/s0301-4622(01)00149-1. [PMID: 11407644]
  • J A Whiles, R Brasseur, K J Glover, G Melacini, E A Komives, R R Vold. Orientation and effects of mastoparan X on phospholipid bicelles. Biophysical journal. 2001 Jan; 80(1):280-93. doi: 10.1016/s0006-3495(01)76013-4. [PMID: 11159401]
  • A Arbuzova, G Schwarz. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. Biochimica et biophysica acta. 1999 Aug; 1420(1-2):139-52. doi: 10.1016/s0005-2736(99)00098-x. [PMID: 10446298]
  • N Hellmann, G Schwarz. Peptide-liposome association. A critical examination with mastoparan-X. Biochimica et biophysica acta. 1998 Mar; 1369(2):267-77. doi: 10.1016/s0005-2736(97)00230-7. [PMID: 9518645]
  • K Matsuzaki. [Molecular action mechanisms and membrane recognition of membrane-acting antimicrobial peptides]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1997 May; 117(5):253-64. doi: 10.1248/yakushi1947.117.5_253. [PMID: 9194394]
  • K Matsuzaki, S Yoneyama, O Murase, K Miyajima. Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry. 1996 Jun; 35(25):8450-6. doi: 10.1021/bi960342a. [PMID: 8679603]
  • G Schwarz, A Arbuzova. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochimica et biophysica acta. 1995 Oct; 1239(1):51-7. doi: 10.1016/0005-2736(95)00134-o. [PMID: 7548144]
  • K Fujita, S Kimura, Y Imanishi. Self-assembly of mastoparan X derivative having fluorescence probe in lipid bilayer membrane. Biochimica et biophysica acta. 1994 Oct; 1195(1):157-63. doi: 10.1016/0005-2736(94)90022-1. [PMID: 7918558]
  • M Sukumar, T Higashijima. G protein-bound conformation of mastoparan-X, a receptor-mimetic peptide. The Journal of biological chemistry. 1992 Oct; 267(30):21421-4. doi: ". [PMID: 1400455]
  • A I de Kroon, J de Gier, B de Kruijff. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles. Biochimica et biophysica acta. 1991 Sep; 1068(2):111-24. doi: 10.1016/0005-2736(91)90199-i. [PMID: 1680397]