Kievitone (BioDeep_00000000675)

   

human metabolite PANOMIX_OTCML-2023 Volatile Flavor Compounds natural product


代谢物信息卡片


3-(2,4-Dihydroxyphenyl)-2,3-dihydro-5,7-dihydroxy-8-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one, 9CI

化学式: C20H20O6 (356.125982)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 0.16%

分子结构信息

SMILES: C1(O)=C(C/C=C(\C)/C)C2OCC(C3=CC=C(O)C=C3O)C(=O)C=2C(O)=C1
InChI: InChI=1S/C20H20O6/c1-10(2)3-5-13-16(23)8-17(24)18-19(25)14(9-26-20(13)18)12-6-4-11(21)7-15(12)22/h3-4,6-8,14,21-24H,5,9H2,1-2H3

描述信息

Kievitone is a hydroxyisoflavanone that is isoflavanone with hydroxy substituents at positions 5, 7, 2 and 4 and a prenyl group at position 8. It has a role as a phytoalexin, an antineoplastic agent and a metabolite. It is a conjugate acid of a kievitone-7-olate.
Kievitone is a natural product found in Vigna subterranea, Vigna radiata, and other organisms with data available.
Isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean), Phaseolus aureus (mung bean), Phaseolus calcaratus (rice bean), Phaseolus lunatus (butter bean), Phaseolus vulgaris (kidney bean) and Vigna unguiculata (all Leguminosae, Papilionoideae). Kievitone is found in many foods, some of which are yellow wax bean, green bean, scarlet bean, and cowpea.
Kievitone is found in adzuki bean. Kievitone is isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean), Phaseolus aureus (mung bean), Phaseolus calcaratus (rice bean), Phaseolus lunatus (butter bean), Phaseolus vulgaris (kidney bean) and Vigna unguiculata (all Leguminosae, Papilionoideae).
A hydroxyisoflavanone that is isoflavanone with hydroxy substituents at positions 5, 7, 2 and 4 and a prenyl group at position 8.

同义名列表

17 个代谢物同义名

3-(2,4-Dihydroxyphenyl)-2,3-dihydro-5,7-dihydroxy-8-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one, 9CI; 4H-1-BENZOPYRAN-4-ONE, 3-(2,4-DIHYDROXYPHENYL)-2,3-DIHYDRO-5,7-DIHYDROXY-8-(3-METHYL-2-BUTEN-1-YL)-; 3-(2,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one; 3-(2,4-Dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one, 3-(2,4-dihydroxyphenyl)-2,3-dihydro-5,7-dihydroxy-8-(3-methyl-2-butenyl)-; 4H-1-Benzopyran-4-one,3-(2,4-dihydroxyphenyl)-2,3-dihydro-5,7-dihydroxy-8-(3-methyl-2-butenyl)-; 3-(2,4-Dihydroxyphenyl)-2,3-dihydro-5,7-dihydroxy-8-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one; 3-(2,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-4H-chromen-4-one; 3-(2,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-enyl)-2,3-dihydrochromen-4-one; Flavanone + 4O, 1Prenyl; Phaseolus substance II; KIEVITONE, (+/-)-; UNII-96V5H76C4P; 96V5H76C4P; Kievitone; Vignatin; Kievitone



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

56 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Hoda A S El-Garhy, Ahmed A Elsisi, Shereen A Mohamed, Osama M Morsy, Gamal Osman, Fayz A Abdel-Rahman. Transcriptomic changes in green bean pods against grey mould and white rot diseases via field application of chemical elicitor nanoparticles. IET nanobiotechnology. 2020 Sep; 14(7):574-583. doi: 10.1049/iet-nbt.2020.0004. [PMID: 33010132]
  • Eerdunbayaer, Mohamed A A Orabi, Hiroe Aoyama, Teruo Kuroda, Tsutomu Hatano. Structures of new phenolics isolated from licorice, and the effectiveness of licorice phenolics on vancomycin-resistant Enterococci. Molecules (Basel, Switzerland). 2014 Aug; 19(9):13027-41. doi: 10.3390/molecules190913027. [PMID: 25157467]
  • Rudy Simons, Jean-Paul Vincken, Loes A M Mol, Susan A M The, Toine F H Bovee, Teus J C Luijendijk, Marian A Verbruggen, Harry Gruppen. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra). Analytical and bioanalytical chemistry. 2011 Jul; 401(1):305-13. doi: 10.1007/s00216-011-5061-9. [PMID: 21573846]
  • Stephen M Boué, Matthew E Burow, Thomas E Wiese, Betty Y Shih, Steven Elliott, Carol H Carter-Wientjes, John A McLachlan, Deepak Bhatnagar. Estrogenic and antiestrogenic activities of phytoalexins from red kidney bean (Phaseolus vulgaris L.). Journal of agricultural and food chemistry. 2011 Jan; 59(1):112-20. doi: 10.1021/jf102255u. [PMID: 21133423]
  • Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International journal of molecular sciences. 2009 Jul; 10(8):3371-3399. doi: 10.3390/ijms10083371. [PMID: 20111684]
  • K Akiyama, K Kawazu, A Kobayashi. A novel method for chemo-enzymatic synthesis of elicitor-active chitosan oligomers and partially N-deacetylated chitin oligomers using N-acylated chitotrioses as substrates in a lysozyme-catalyzed transglycosylation reaction system. Carbohydrate research. 1995 Dec; 279(?):151-60. doi: 10.1016/0008-6215(95)00288-x. [PMID: 8593620]